Dynamics of a particle in the double-slit experiment with measurement
- URL: http://arxiv.org/abs/2412.00584v1
- Date: Sat, 30 Nov 2024 20:48:56 GMT
- Title: Dynamics of a particle in the double-slit experiment with measurement
- Authors: Alexey A. Kryukov,
- Abstract summary: We show that the evolution of a particle's state can be effectively captured through a random walk on a two-dimensional submanifold of the state space.
This random walk reproduces the Born rule for the probability of finding the particle near the slits.
A drift-free model, based on equivalence classes of states indistinguishable by the detector, is also considered.
- Score: 0.0
- License:
- Abstract: Spontaneous collapse models use non-linear stochastic modifications of the Schroedinger equation to suppress superpositions of eigenstates of the measured observable and drive the state to an eigenstate. It was recently demonstrated that the Born rule for transition probabilities can be modeled using the linear Schroedinger equation with a Hamiltonian represented by a random matrix from the Gaussian unitary ensemble. The matrices representing the Hamiltonian at different time points throughout the observation period are assumed to be independent. Instead of suppressing superpositions, such Schroedinger evolution makes the state perform an isotropic random walk on the projective space of states. The relative frequency of reaching different eigenstates of an arbitrary observable in the random walk is shown to satisfy the Born rule. Here, we apply this methodology to investigate the behavior of a particle in the context of the double-slit experiment with measurement. Our analysis shows that, in this basic case, the evolution of the particle's state can be effectively captured through a random walk on a two-dimensional submanifold of the state space. This random walk reproduces the Born rule for the probability of finding the particle near the slits, conditioned on its arrival at one of them. To ensure that this condition is satisfied, we introduce a drift term representing a change in the variance of the position observable for the state. A drift-free model, based on equivalence classes of states indistinguishable by the detector, is also considered. The resulting random walk, with or without drift, serves as a suitable model for describing the transition from the initial state to an eigenstate of the measured observable in the experiment, offering new insights into its potential underlying mechanisms.
Related papers
- Quantum Particle Statistics in Classical Shallow Water Waves [4.995343972237369]
We show that when locally oscillating particles are guided by real wave gradients, particles may exhibit trajectories of alternating periodic or chaotic dynamics.
The particle probability distribution function of this analogy reveals the quantum statistics of the standard solutions of the Schr"odinger equation.
arXiv Detail & Related papers (2024-09-29T09:40:19Z) - Unitary description of the Jaynes-Cummings model under fractional-time dynamics [0.0]
We show that a unitary evolution can be achieved for a traceless two-level Hamiltonian.
We take into account the fractional-order parameter $alpha$ and its effect in unitary quantum dynamics.
arXiv Detail & Related papers (2024-09-09T17:44:31Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Can the Schrodinger dynamics explain measurement? [0.0]
We use the Hamiltonian represented by a random matrix in the Gaussian unitary ensemble to study the Schr"odinger evolution of non-stationary states.
It is shown that the Schr"odinger evolution with such a Hamiltonian models measurement on macroscopic and microscopic systems.
arXiv Detail & Related papers (2023-01-05T00:32:17Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Dynamical symmetrization of the state of identical particles [0.0]
We propose a model for state symmetrization of two identical particles produced in spacelike-separated events by independent sources.
As the particles approach each other, a quantum jump takes place upon particle collision, which erases their distinguishability.
We show that symmetric measurements performed on identical particles can in principle discriminate between the product and symmetrized states.
arXiv Detail & Related papers (2020-11-17T18:56:28Z) - Quantum eigenstates from classical Gibbs distributions [0.0]
We discuss how the language of wave functions (state vectors) and associated non-commuting Hermitian operators naturally emerges from classical mechanics.
We show that some paradigmatic examples such as tunneling, band structures, Berry phases, Landau levels, level statistics and quantum eigenstates in chaotic potentials can be reproduced to a surprising precision from a classical Gibbs ensemble.
arXiv Detail & Related papers (2020-07-14T18:00:05Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.