The Impact of Generative AI on Student Churn and the Future of Formal Education
- URL: http://arxiv.org/abs/2412.00605v1
- Date: Sat, 30 Nov 2024 22:48:06 GMT
- Title: The Impact of Generative AI on Student Churn and the Future of Formal Education
- Authors: Stephen Elbourn,
- Abstract summary: This research explores the emerging trend where high school students, empowered by tailored educational experiences, opt to forgo traditional university degrees to pursue entrepreneurial ventures at a younger age.
To understand and predict the future of education in the age of Generative AI, we employ a comprehensive methodology to analyse social media data.
Our approach includes sentiment analysis to gauge public opinion, topic modelling to identify key themes and emerging trends, and user demographic analysis to understand the engagement of different age groups and regions.
- Score: 0.0
- License:
- Abstract: In the contemporary educational landscape, the advent of Generative Artificial Intelligence (AI) presents unprecedented opportunities for personalised learning, fundamentally challenging the traditional paradigms of education. This research explores the emerging trend where high school students, empowered by tailored educational experiences provided by Generative AI, opt to forgo traditional university degrees to pursue entrepreneurial ventures at a younger age. To understand and predict the future of education in the age of Generative AI, we employ a comprehensive methodology to analyse social media data. Our approach includes sentiment analysis to gauge public opinion, topic modelling to identify key themes and emerging trends, and user demographic analysis to understand the engagement of different age groups and regions. We also perform influencer analysis to identify key figures shaping the discourse and engagement metrics to measure the level of interest and interaction with AI-related educational content. Content analysis helps us to determine the types of content being shared and the prevalent narratives, while hashtag analysis reveals the connectivity of discussions. The temporal analysis tracks changes over time and identifies event-based spikes in discussions. The insights derived from this analysis include the acceptance and adoption of Generative AI in education, its impact on traditional education models, the influence on students' entrepreneurial ambitions, and the educational outcomes associated with AI-driven personalised learning. Additionally, we explore public sentiment towards policies and regulations and use predictive modelling to forecast future trends. This comprehensive social media analysis provides a nuanced understanding of the evolving educational landscape, offering valuable perspectives on the role of Generative AI in shaping the future of education.
Related papers
- Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy, Research, and Practice [186.055899073629]
Unlearning is often invoked as a solution for removing the effects of targeted information from a generative-AI model.
Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs.
Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges.
arXiv Detail & Related papers (2024-12-09T20:18:43Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Qualitative and quantitative analysis of student's perceptions in the use of generative AI in educational environments [0.0]
The effective integration of generative artificial intelligence in education is a fundamental aspect to prepare future generations.
The objective of this study is to analyze from a quantitative and qualitative point of view the perception of controlled student-IA interaction within the classroom.
arXiv Detail & Related papers (2024-05-22T09:56:05Z) - Generative AI in Education: A Study of Educators' Awareness, Sentiments, and Influencing Factors [2.217351976766501]
This study delves into university instructors' experiences and attitudes toward AI language models.
We find no correlation between teaching style and attitude toward generative AI.
While CS educators show far more confidence in their technical understanding of generative AI tools, they show no more confidence in their ability to detect AI-generated work.
arXiv Detail & Related papers (2024-03-22T19:21:29Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - From Algorithm Worship to the Art of Human Learning: Insights from 50-year journey of AI in Education [0.0]
Current discourse surrounding Artificial Intelligence (AI) oscillates between hope and apprehension.
This paper delves into the complexities of AI's role in Education, addressing the mixed messages that have both enthused and alarmed educators.
It explores the promises that AI holds for enhancing learning through personalisation at scale, against the backdrop of concerns about ethical implications.
arXiv Detail & Related papers (2024-02-05T16:12:14Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Generative AI and Its Educational Implications [0.0]
We discuss the implications of generative AI on education across four critical sections.
We propose ways in which generative AI can transform the educational landscape.
Acknowledging the societal impact, we emphasize the need for updating curricula.
arXiv Detail & Related papers (2023-12-26T21:29:31Z) - Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education [0.2812395851874055]
This research study explores the conceptualization, development, and deployment of an innovative learning analytics tool.
By analyzing critical data points such as students' stress levels, curiosity, confusion, agitation, topic preferences, and study methods, the tool provides a comprehensive view of the learning environment.
This research underscores AI's role in shaping personalized, data-driven education.
arXiv Detail & Related papers (2023-12-15T06:00:26Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.