Towards Privacy-Preserving Medical Imaging: Federated Learning with Differential Privacy and Secure Aggregation Using a Modified ResNet Architecture
- URL: http://arxiv.org/abs/2412.00687v1
- Date: Sun, 01 Dec 2024 05:52:29 GMT
- Title: Towards Privacy-Preserving Medical Imaging: Federated Learning with Differential Privacy and Secure Aggregation Using a Modified ResNet Architecture
- Authors: Mohamad Haj Fares, Ahmed Mohamed Saad Emam Saad,
- Abstract summary: This research introduces a federated learning framework that combines local differential privacy and secure aggregation.
We also propose DPResNet, a modified ResNet architecture optimized for differential privacy.
- Score: 0.0
- License:
- Abstract: With increasing concerns over privacy in healthcare, especially for sensitive medical data, this research introduces a federated learning framework that combines local differential privacy and secure aggregation using Secure Multi-Party Computation for medical image classification. Further, we propose DPResNet, a modified ResNet architecture optimized for differential privacy. Leveraging the BloodMNIST benchmark dataset, we simulate a realistic data-sharing environment across different hospitals, addressing the distinct privacy challenges posed by federated healthcare data. Experimental results indicate that our privacy-preserving federated model achieves accuracy levels close to non-private models, surpassing traditional approaches while maintaining strict data confidentiality. By enhancing the privacy, efficiency, and reliability of healthcare data management, our approach offers substantial benefits to patients, healthcare providers, and the broader healthcare ecosystem.
Related papers
- Differentially Private Multi-Site Treatment Effect Estimation [28.13660104055298]
Most patient data remains in silo in separate hospitals, preventing the design of data-driven healthcare AI systems.
We look at estimating the average treatment effect (ATE), an important task in causal inference for healthcare applications.
We address this through a class of per-site estimation algorithms that reports the ATE estimate and its variance as a quality measure.
arXiv Detail & Related papers (2023-10-10T01:21:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Differential Privacy for Adaptive Weight Aggregation in Federated Tumor
Segmentation [0.16746114653388383]
Federated Learning (FL) is a distributed machine learning approach that safeguards privacy by creating an impartial global model while respecting the privacy of individual client data.
We present a differential privacy (DP) federated deep learning framework in medical image segmentation.
We extend our similarity weight aggregation (SimAgg) method to DP-SimAgg algorithm, a differentially private similarity-weighted aggregation algorithm for brain tumor segmentation.
arXiv Detail & Related papers (2023-08-01T21:59:22Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions.
Privacy-preserving mechanisms are paramount in medical image analysis, where the data being sensitive in nature.
This study addresses the need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification.
arXiv Detail & Related papers (2023-06-30T16:48:58Z) - Towards Blockchain-Assisted Privacy-Aware Data Sharing For Edge
Intelligence: A Smart Healthcare Perspective [19.208368632576153]
Linkage attack is a type of dominant attack in the privacy domain.
adversaries launch poisoning attacks to falsify the health data, which leads to misdiagnosing or even physical damage.
To protect private health data, we propose a personalized differential privacy model based on the trust levels among users.
arXiv Detail & Related papers (2023-06-29T02:06:04Z) - Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging [47.99192239793597]
We evaluated the effect of privacy-preserving training of AI models regarding accuracy and fairness compared to non-private training.
Our study shows that -- under the challenging realistic circumstances of a real-life clinical dataset -- the privacy-preserving training of diagnostic deep learning models is possible with excellent diagnostic accuracy and fairness.
arXiv Detail & Related papers (2023-02-03T09:49:13Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
We design privacy preserving exploration policies for episodic reinforcement learning (RL)
We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)
We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee.
arXiv Detail & Related papers (2020-09-18T20:18:35Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
We propose the first syntactic approach for offering privacy in the context of federated learning.
Our approach aims to maximize utility or model performance, while supporting a defensible level of privacy.
We perform a comprehensive empirical evaluation on two important problems in the healthcare domain, using real-world electronic health data of 1 million patients.
arXiv Detail & Related papers (2020-02-21T02:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.