CtrlNeRF: The Generative Neural Radiation Fields for the Controllable Synthesis of High-fidelity 3D-Aware Images
- URL: http://arxiv.org/abs/2412.00754v1
- Date: Sun, 01 Dec 2024 10:19:24 GMT
- Title: CtrlNeRF: The Generative Neural Radiation Fields for the Controllable Synthesis of High-fidelity 3D-Aware Images
- Authors: Jian Liu, Zhen Yu,
- Abstract summary: generative neural radiance field (GRAF) is capable of producing images from random noise z without 3D supervision.
In practice, shape and appearance are modeled by z_s and z_a, respectively, to manipulate them separately during inference.
We introduce a controllable generative model that uses a single network to represent multiple scenes with shared weights.
- Score: 5.50550810374347
- License:
- Abstract: The neural radiance field (NERF) advocates learning the continuous representation of 3D geometry through a multilayer perceptron (MLP). By integrating this into a generative model, the generative neural radiance field (GRAF) is capable of producing images from random noise z without 3D supervision. In practice, the shape and appearance are modeled by z_s and z_a, respectively, to manipulate them separately during inference. However, it is challenging to represent multiple scenes using a solitary MLP and precisely control the generation of 3D geometry in terms of shape and appearance. In this paper, we introduce a controllable generative model (i.e. \textbf{CtrlNeRF}) that uses a single MLP network to represent multiple scenes with shared weights. Consequently, we manipulated the shape and appearance codes to realize the controllable generation of high-fidelity images with 3D consistency. Moreover, the model enables the synthesis of novel views that do not exist in the training sets via camera pose alteration and feature interpolation. Extensive experiments were conducted to demonstrate its superiority in 3D-aware image generation compared to its counterparts.
Related papers
- F3D-Gaus: Feed-forward 3D-aware Generation on ImageNet with Cycle-Consistent Gaussian Splatting [35.625593119642424]
This paper tackles the problem of generalizable 3D-aware generation from monocular datasets.
We propose a novel feed-forward pipeline based on pixel-aligned Gaussian Splatting.
We also introduce a self-supervised cycle-consistent constraint to enforce cross-view consistency in the learned 3D representation.
arXiv Detail & Related papers (2025-01-12T04:44:44Z) - Text2Control3D: Controllable 3D Avatar Generation in Neural Radiance
Fields using Geometry-Guided Text-to-Image Diffusion Model [39.64952340472541]
We propose a controllable text-to-3D avatar generation method whose facial expression is controllable.
Our main strategy is to construct the 3D avatar in Neural Radiance Fields (NeRF) optimized with a set of controlled viewpoint-aware images.
We demonstrate the empirical results and discuss the effectiveness of our method.
arXiv Detail & Related papers (2023-09-07T08:14:46Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - 3D-LDM: Neural Implicit 3D Shape Generation with Latent Diffusion Models [8.583859530633417]
We propose a diffusion model for neural implicit representations of 3D shapes that operates in the latent space of an auto-decoder.
This allows us to generate diverse and high quality 3D surfaces.
arXiv Detail & Related papers (2022-12-01T20:00:00Z) - CGOF++: Controllable 3D Face Synthesis with Conditional Generative
Occupancy Fields [52.14985242487535]
We propose a new conditional 3D face synthesis framework, which enables 3D controllability over generated face images.
At its core is a conditional Generative Occupancy Field (cGOF++) that effectively enforces the shape of the generated face to conform to a given 3D Morphable Model (3DMM) mesh.
Experiments validate the effectiveness of the proposed method and show more precise 3D controllability than state-of-the-art 2D-based controllable face synthesis methods.
arXiv Detail & Related papers (2022-11-23T19:02:50Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z) - Controllable 3D Generative Adversarial Face Model via Disentangling
Shape and Appearance [63.13801759915835]
3D face modeling has been an active area of research in computer vision and computer graphics.
This paper proposes a new 3D face generative model that can decouple identity and expression.
arXiv Detail & Related papers (2022-08-30T13:40:48Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
State-of-the-art 3D generative models are GANs which use neural 3D volumetric representations for synthesis.
In this paper, we design a 3D GAN which can learn a disentangled model of objects, just from monocular observations.
arXiv Detail & Related papers (2022-03-29T22:03:18Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z) - Towards a Neural Graphics Pipeline for Controllable Image Generation [96.11791992084551]
We present Neural Graphics Pipeline (NGP), a hybrid generative model that brings together neural and traditional image formation models.
NGP decomposes the image into a set of interpretable appearance feature maps, uncovering direct control handles for controllable image generation.
We demonstrate the effectiveness of our approach on controllable image generation of single-object scenes.
arXiv Detail & Related papers (2020-06-18T14:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.