DIVD: Deblurring with Improved Video Diffusion Model
- URL: http://arxiv.org/abs/2412.00773v1
- Date: Sun, 01 Dec 2024 11:39:02 GMT
- Title: DIVD: Deblurring with Improved Video Diffusion Model
- Authors: Haoyang Long, Yan Wang, Wendong Wang,
- Abstract summary: Diffusion models and video diffusion models have excelled in the fields of image and video generation.
We introduce a video diffusion model specifically for the task of video deblurring.
Our model outperforms existing models and achieves state-of-the-art results on a range of perceptual metrics.
- Score: 8.816046910904488
- License:
- Abstract: Video deblurring presents a considerable challenge owing to the complexity of blur, which frequently results from a combination of camera shakes, and object motions. In the field of video deblurring, many previous works have primarily concentrated on distortion-based metrics, such as PSNR. However, this approach often results in a weak correlation with human perception and yields reconstructions that lack realism. Diffusion models and video diffusion models have respectively excelled in the fields of image and video generation, particularly achieving remarkable results in terms of image authenticity and realistic perception. However, due to the computational complexity and challenges inherent in adapting diffusion models, there is still uncertainty regarding the potential of video diffusion models in video deblurring tasks. To explore the viability of video diffusion models in the task of video deblurring, we introduce a diffusion model specifically for this purpose. In this field, leveraging highly correlated information between adjacent frames and addressing the challenge of temporal misalignment are crucial research directions. To tackle these challenges, many improvements based on the video diffusion model are introduced in this work. As a result, our model outperforms existing models and achieves state-of-the-art results on a range of perceptual metrics. Our model preserves a significant amount of detail in the images while maintaining competitive distortion metrics. Furthermore, to the best of our knowledge, this is the first time the diffusion model has been applied in video deblurring to overcome the limitations mentioned above.
Related papers
- DiffuEraser: A Diffusion Model for Video Inpainting [13.292164408616257]
We introduce DiffuEraser, a video inpainting model based on stable diffusion, to fill masked regions with greater details and more coherent structures.
We also expand the temporal receptive fields of both the prior model and DiffuEraser, and further enhance consistency by leveraging the temporal smoothing property of Video Diffusion Models.
arXiv Detail & Related papers (2025-01-17T08:03:02Z) - Accelerating Video Diffusion Models via Distribution Matching [26.475459912686986]
This work introduces a novel framework for diffusion distillation and distribution matching.
Our approach focuses on distilling pre-trained diffusion models into a more efficient few-step generator.
By leveraging a combination of video GAN loss and a novel 2D score distribution matching loss, we demonstrate the potential to generate high-quality video frames.
arXiv Detail & Related papers (2024-12-08T11:36:32Z) - Your Image is Secretly the Last Frame of a Pseudo Video [20.161039114393148]
We investigate the possibility of improving other types of generative models with pseudo videos.
Specifically, we first extend a given image generative model to their video generative model counterpart, and then train the video generative model on pseudo videos constructed by applying data augmentation to the original images.
arXiv Detail & Related papers (2024-10-26T12:15:25Z) - Noise Crystallization and Liquid Noise: Zero-shot Video Generation using Image Diffusion Models [6.408114351192012]
Video models require extensive training and computational resources, leading to high costs and large environmental impacts.
This paper introduces a novel approach to video generation by augmenting image diffusion models to create sequential animation frames while maintaining fine detail.
arXiv Detail & Related papers (2024-10-05T12:53:05Z) - Solving Video Inverse Problems Using Image Diffusion Models [58.464465016269614]
We introduce an innovative video inverse solver that leverages only image diffusion models.
Our method treats the time dimension of a video as the batch dimension image diffusion models.
We also introduce a batch-consistent sampling strategy that encourages consistency across batches.
arXiv Detail & Related papers (2024-09-04T09:48:27Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - A Survey on Video Diffusion Models [103.03565844371711]
The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision.
Due to their impressive generative capabilities, diffusion models are gradually superseding methods based on GANs and auto-regressive Transformers.
This paper presents a comprehensive review of video diffusion models in the AIGC era.
arXiv Detail & Related papers (2023-10-16T17:59:28Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - VIDM: Video Implicit Diffusion Models [75.90225524502759]
Diffusion models have emerged as a powerful generative method for synthesizing high-quality and diverse set of images.
We propose a video generation method based on diffusion models, where the effects of motion are modeled in an implicit condition.
We improve the quality of the generated videos by proposing multiple strategies such as sampling space truncation, robustness penalty, and positional group normalization.
arXiv Detail & Related papers (2022-12-01T02:58:46Z) - Latent Video Diffusion Models for High-Fidelity Long Video Generation [58.346702410885236]
We introduce lightweight video diffusion models using a low-dimensional 3D latent space.
We also propose hierarchical diffusion in the latent space such that longer videos with more than one thousand frames can be produced.
Our framework generates more realistic and longer videos than previous strong baselines.
arXiv Detail & Related papers (2022-11-23T18:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.