ESCAPE: Equivariant Shape Completion via Anchor Point Encoding
- URL: http://arxiv.org/abs/2412.00952v1
- Date: Sun, 01 Dec 2024 20:05:14 GMT
- Title: ESCAPE: Equivariant Shape Completion via Anchor Point Encoding
- Authors: Burak Bekci, Nassir Navab, Federico Tombari, Mahdi Saleh,
- Abstract summary: We introduce ESCAPE, a framework designed to achieve rotation-equivariant shape completion.
ESCAPE employs a distinctive encoding strategy by selecting anchor points from a shape and representing all points as a distance to all anchor points.
ESCAPE achieves robust, high-quality reconstructions across arbitrary rotations and translations.
- Score: 79.59829525431238
- License:
- Abstract: Shape completion, a crucial task in 3D computer vision, involves predicting and filling the missing regions of scanned or partially observed objects. Current methods expect known pose or canonical coordinates and do not perform well under varying rotations, limiting their real-world applicability. We introduce ESCAPE (Equivariant Shape Completion via Anchor Point Encoding), a novel framework designed to achieve rotation-equivariant shape completion. Our approach employs a distinctive encoding strategy by selecting anchor points from a shape and representing all points as a distance to all anchor points. This enables the model to capture a consistent, rotation-equivariant understanding of the object's geometry. ESCAPE leverages a transformer architecture to encode and decode the distance transformations, ensuring that generated shape completions remain accurate and equivariant under rotational transformations. Subsequently, we perform optimization to calculate the predicted shapes from the encodings. Experimental evaluations demonstrate that ESCAPE achieves robust, high-quality reconstructions across arbitrary rotations and translations, showcasing its effectiveness in real-world applications without additional pose estimation modules.
Related papers
- Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform [62.27337227010514]
We introduce a novel self-supervised Rotation-Invariant 3D correspondence learner with Local Shape Transform, dubbed RIST.
RIST learns to establish dense correspondences between shapes even under challenging intra-class variations and arbitrary orientations.
RIST demonstrates state-of-the-art performances on 3D part label transfer and semantic keypoint transfer given arbitrarily rotated point cloud pairs.
arXiv Detail & Related papers (2024-04-17T08:09:25Z) - Rethinking Rotation Invariance with Point Cloud Registration [18.829454172955202]
We propose an effective framework for rotation invariance learning via three sequential stages, namely rotation-invariant shape encoding, aligned feature integration, and deep feature registration.
Experimental results on 3D shape classification, part segmentation, and retrieval tasks prove the feasibility of our work.
arXiv Detail & Related papers (2022-12-31T08:17:09Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
We propose a novel framework for category-level object shape and pose estimation from a single RGB-D image.
To handle the intra-category variation, we adopt a semantic primitive representation that encodes diverse shapes into a unified latent space.
We show that the proposed method achieves SOTA pose estimation performance and better generalization in the real-world dataset.
arXiv Detail & Related papers (2022-10-03T17:51:54Z) - Shape-Pose Disentanglement using SE(3)-equivariant Vector Neurons [59.83721247071963]
We introduce an unsupervised technique for encoding point clouds into a canonical shape representation, by disentangling shape and pose.
Our encoder is stable and consistent, meaning that the shape encoding is purely pose-invariant.
The extracted rotation and translation are able to semantically align different input shapes of the same class to a common canonical pose.
arXiv Detail & Related papers (2022-04-03T21:00:44Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - 3D Unsupervised Region-Aware Registration Transformer [13.137287695912633]
Learning robust point cloud registration models with deep neural networks has emerged as a powerful paradigm.
We propose a new design of 3D region partition module that is able to divide the input shape to different regions with a self-supervised 3D shape reconstruction loss.
Our experiments show that our 3D-URRT achieves superior registration performance over various benchmark datasets.
arXiv Detail & Related papers (2021-10-07T15:06:52Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z) - Quaternion Equivariant Capsule Networks for 3D Point Clouds [58.566467950463306]
We present a 3D capsule module for processing point clouds that is equivariant to 3D rotations and translations.
We connect dynamic routing between capsules to the well-known Weiszfeld algorithm.
Based on our operator, we build a capsule network that disentangles geometry from pose.
arXiv Detail & Related papers (2019-12-27T13:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.