Quantum Information Processing, Sensing and Communications: Their Myths, Realities and Futures
- URL: http://arxiv.org/abs/2412.00987v1
- Date: Sun, 01 Dec 2024 22:28:02 GMT
- Title: Quantum Information Processing, Sensing and Communications: Their Myths, Realities and Futures
- Authors: Lajos Hanzo, Zunaira Babar, Zhenyu Cai, Daryus Chandra, Ivan B. Djordjevic, Balint Koczor, Soon Xin Ng, Mohsen Razavi, Osvaldo Simeone,
- Abstract summary: The state-of-the-art, knowledge gaps and future evolution of quantum machine learning are discussed.
We conclude with a set of promising future research ideas in the field of ultimately secure quantum communications.
- Score: 61.25494706587422
- License:
- Abstract: The recent advances in quantum information processing, sensing and communications are surveyed with the objective of identifying the associated knowledge gaps and formulating a roadmap for their future evolution. Since the operation of quantum systems is prone to the deleterious effects of decoherence, which manifests itself in terms of bit-flips, phase-flips or both, the pivotal subject of quantum error mitigation is reviewed both in the presence and absence of quantum coding. The state-of-the-art, knowledge gaps and future evolution of quantum machine learning are also discussed, followed by a discourse on quantum radar systems and briefly hypothesizing about the feasibility of integrated sensing and communications in the quantum domain. Finally, we conclude with a set of promising future research ideas in the field of ultimately secure quantum communications with the objective of harnessing ideas from the classical communications field.
Related papers
- Harnessing Quantum Entanglement: Comprehensive Strategies for Enhanced Communication and Beyond in Quantum Networks [1.2277343096128712]
Entanglement, a key quantum phenomenon, enables advanced protocols with enhanced security and processing power.
Quantum Internet, Quantum Error-Correcting codes, and quantum cryptographys role in ensuring secure communication.
arXiv Detail & Related papers (2024-06-13T05:54:34Z) - Quantum Communication: From Fundamentals to Recent Trends, Challenges and Open Problems [1.2277343096128712]
New area of quantum communication has shown potential to replace modernday communication technologies.
The enhanced security and high information sharing ability using principles of quantum mechanics has encouraged networking engineers and physicists to develop this technology for next generation wireless systems.
This paper builds the fundamental concepts required for understanding quantum communication, reviews the key concepts and demonstrates how these concepts can be leveraged for accomplishing successful communication.
arXiv Detail & Related papers (2024-06-06T20:35:35Z) - Quantum integrated sensing and communication via entanglement [4.854937611943075]
We propose a novel quantum integrated sensing and communication protocol, which achieves quantum sensing under the Heisenberg limit.
We have theoretically proven its security against eavesdroppers.
arXiv Detail & Related papers (2024-04-12T09:17:43Z) - Towards Quantum-Native Communication Systems: State-of-the-Art, Trends, and Challenges [27.282184604334603]
The survey examines technologies such as quantumdomain (QD) multi-input multi-output, QD non-orthogonal multiple access, quantum secure direct communication, QD resource allocation, QD routing, and QD artificial intelligence.
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Machine Learning for Quantum Matter [0.0]
We review the recent development and adaptation of machine learning ideas for the purpose advancing research in quantum matter.
We discuss the outlook for future developments in areas at the intersection between machine learning and quantum many-body physics.
arXiv Detail & Related papers (2020-03-24T18:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.