TruncFormer: Private LLM Inference Using Only Truncations
- URL: http://arxiv.org/abs/2412.01042v1
- Date: Mon, 02 Dec 2024 01:55:42 GMT
- Title: TruncFormer: Private LLM Inference Using Only Truncations
- Authors: Patrick Yubeaton, Jianqiao Cambridge Mo, Karthik Garimella, Nandan Kumar Jha, Brandon Reagen, Chinmay Hegde, Siddharth Garg,
- Abstract summary: Private inference (PI) serves an important role in guaranteeing the privacy of user data.<n>PI remains practically intractable due to the massive latency costs associated with nonlinear functions in machine learning models.<n>We introduce TruncFormer, a framework for taking any machine learning model and transforming it into a plaintext emulation of PI.
- Score: 20.477495294254997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Private inference (PI) serves an important role in guaranteeing the privacy of user data when interfacing with proprietary machine learning models such as LLMs. However, PI remains practically intractable due to the massive latency costs associated with nonlinear functions present in LLMs. Existing works have focused on improving latency of specific LLM nonlinearities (such as the Softmax, or the GeLU) via approximations. However, new types of nonlinearities are regularly introduced with new LLM architectures, and this has led to a constant game of catch-up where PI researchers attempt to optimize the newest nonlinear function. We introduce TruncFormer, a framework for taking any LLM and transforming it into a plaintext emulation of PI. Our framework leverages the fact that nonlinearities in LLMs are differentiable and can be accurately approximated with a sequence of additions, multiplications, and truncations. Further, we decouple the add/multiply and truncation operations, and statically determine where truncations should be inserted based on a given field size and input representation size. This leads to latency improvements over existing cryptographic protocols that enforce truncation after every multiplication operation. We open source our code for community use.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - NVCiM-PT: An NVCiM-assisted Prompt Tuning Framework for Edge LLMs [21.975885198257664]
Large Language Models (LLMs) deployed on edge devices need to fine-tune their model parameters from user-generated data under limited resource constraints.
Most existing learning methods are not applicable for edge LLMs because of their reliance on high resources and low learning capacity.
We introduce a novel NVCiM-assisted PT framework, where we narrow down the core operations to matrix-matrix multiplication.
arXiv Detail & Related papers (2024-11-12T23:43:20Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF) has demonstrated significant potential across various domains.
This paper introduces an RLAIF framework for improving the code generation abilities of lightweight (1B parameters) LLMs.
arXiv Detail & Related papers (2024-06-28T17:16:03Z) - Can LLMs Separate Instructions From Data? And What Do We Even Mean By That? [60.50127555651554]
Large Language Models (LLMs) show impressive results in numerous practical applications, but they lack essential safety features.
This makes them vulnerable to manipulations such as indirect prompt injections and generally unsuitable for safety-critical tasks.
We introduce a formal measure for instruction-data separation and an empirical variant that is calculable from a model's outputs.
arXiv Detail & Related papers (2024-03-11T15:48:56Z) - InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory [93.20588235940453]
In this paper, we introduce a training-free memory-based method, InfLLM.
InfLLM stores distant contexts into additional memory units and employs an efficient mechanism to lookup token-relevant units for attention.
Even when the sequence length is scaled to $1,024$K, InfLLM still effectively captures long-distance dependencies.
arXiv Detail & Related papers (2024-02-07T06:50:42Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
We introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach to fine-tune large language models (LLMs)
Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs.
arXiv Detail & Related papers (2023-10-13T07:38:52Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
Large language models (LLMs) have revolutionized the field of AI, demonstrating unprecedented capacity across various tasks.
In this paper, we propose an efficient LLM inference pipeline that harnesses the power of LLMs.
arXiv Detail & Related papers (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM
Inference with Transferable Prompt [96.24800696597707]
We introduce a new perspective to optimize this trade-off by prompting compressed models.
We propose a soft prompt learning method where we expose the compressed model to the prompt learning process.
Our experimental analysis suggests our soft prompt strategy greatly improves the performance of the 8x compressed LLaMA-7B model.
arXiv Detail & Related papers (2023-05-17T20:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.