Lookahead Counterfactual Fairness
- URL: http://arxiv.org/abs/2412.01065v1
- Date: Mon, 02 Dec 2024 02:53:14 GMT
- Title: Lookahead Counterfactual Fairness
- Authors: Zhiqun Zuo, Tian Xie, Xuwei Tan, Xueru Zhang, Mohammad Mahdi Khalili,
- Abstract summary: Concerns have arisen that machine learning algorithms may be biased against certain social groups.
We introduce textitlook counterfactual (LCF), a notion accounting for the downstream effects of ML models.
- Score: 13.803918985391451
- License:
- Abstract: As machine learning (ML) algorithms are used in applications that involve humans, concerns have arisen that these algorithms may be biased against certain social groups. \textit{Counterfactual fairness} (CF) is a fairness notion proposed in Kusner et al. (2017) that measures the unfairness of ML predictions; it requires that the prediction perceived by an individual in the real world has the same marginal distribution as it would be in a counterfactual world, in which the individual belongs to a different group. Although CF ensures fair ML predictions, it fails to consider the downstream effects of ML predictions on individuals. Since humans are strategic and often adapt their behaviors in response to the ML system, predictions that satisfy CF may not lead to a fair future outcome for the individuals. In this paper, we introduce \textit{lookahead counterfactual fairness} (LCF), a fairness notion accounting for the downstream effects of ML models which requires the individual \textit{future status} to be counterfactually fair. We theoretically identify conditions under which LCF can be satisfied and propose an algorithm based on the theorems. We also extend the concept to path-dependent fairness. Experiments on both synthetic and real data validate the proposed method.
Related papers
- Counterfactual Fairness by Combining Factual and Counterfactual Predictions [18.950415688199993]
In high-stake domains such as healthcare and hiring, the role of machine learning (ML) in decision-making raises significant fairness concerns.
This work focuses on Counterfactual Fairness (CF), which posits that an ML model's outcome on any individual should remain unchanged if they had belonged to a different demographic group.
We provide a theoretical study on the inherent trade-off between CF and predictive performance in a model-agnostic manner.
arXiv Detail & Related papers (2024-09-03T15:21:10Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Counterfactual Fairness for Predictions using Generative Adversarial
Networks [28.65556399421874]
We develop a novel deep neural network called Generative Counterfactual Fairness Network (GCFN) for making predictions under counterfactual fairness.
Our method is mathematically guaranteed to ensure the notion of counterfactual fairness.
arXiv Detail & Related papers (2023-10-26T17:58:39Z) - Causal Fair Machine Learning via Rank-Preserving Interventional Distributions [0.5062312533373299]
We define individuals as being normatively equal if they are equal in a fictitious, normatively desired (FiND) world.
We propose rank-preserving interventional distributions to define a specific FiND world in which this holds.
We show that our warping approach effectively identifies the most discriminated individuals and mitigates unfairness.
arXiv Detail & Related papers (2023-07-24T13:46:50Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - What Is Fairness? On the Role of Protected Attributes and Fictitious Worlds [8.223468651994352]
A growing body of literature in fairness-aware machine learning (fairML) aims to mitigate machine learning (ML)-related unfairness in automated decision-making (ADM)
However, the underlying concept of fairness is rarely discussed, leaving a significant gap between centuries of philosophical discussion and the recent adoption of the concept in the ML community.
We try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the training and evaluation of ML models in ADM systems.
arXiv Detail & Related papers (2022-05-19T15:37:26Z) - Domain Adaptation meets Individual Fairness. And they get along [48.95808607591299]
We show that algorithmic fairness interventions can help machine learning models overcome distribution shifts.
In particular, we show that enforcing suitable notions of individual fairness (IF) can improve the out-of-distribution accuracy of ML models.
arXiv Detail & Related papers (2022-05-01T16:19:55Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - The Sharpe predictor for fairness in machine learning [0.0]
In machine learning applications, unfair predictions may discriminate against a minority group.
Most existing approaches for fair machine learning (FML) treat fairness as a constraint or a penalization term in the optimization of a ML model.
We introduce a new paradigm for FML based on Multi-Objective Optimization (SMOO), where accuracy and fairness metrics stand as conflicting objectives to be optimized simultaneously.
The Sharpe predictor for FML provides the highest prediction return (accuracy) per unit of prediction risk (unfairness).
arXiv Detail & Related papers (2021-08-13T22:22:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.