Representation Learning for Time-Domain High-Energy Astrophysics: Discovery of Extragalactic Fast X-ray Transient XRT 200515
- URL: http://arxiv.org/abs/2412.01150v2
- Date: Tue, 04 Mar 2025 04:31:11 GMT
- Title: Representation Learning for Time-Domain High-Energy Astrophysics: Discovery of Extragalactic Fast X-ray Transient XRT 200515
- Authors: Steven Dillmann, Juan Rafael MartÃnez-Galarza, Roberto Soria, Rosanne Di Stefano, Vinay L. Kashyap,
- Abstract summary: We present a novel representation learning method for downstream tasks like anomaly detection, unsupervised classification, and similarity searches in high-energy data sets.<n>This enabled the discovery of a new extragalactic fast X-ray transient (FXT) in Chandra archival data, XRT 200515, a needle-in-the-haystack event and the first Chandra FXT of its kind.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel representation learning method for downstream tasks like anomaly detection, unsupervised classification, and similarity searches in high-energy data sets. This enabled the discovery of a new extragalactic fast X-ray transient (FXT) in Chandra archival data, XRT 200515, a needle-in-the-haystack event and the first Chandra FXT of its kind. Recent serendipitous discoveries in X-ray astronomy, including FXTs from binary neutron star mergers and an extragalactic planetary transit candidate, highlight the need for systematic transient searches in X-ray archives. We introduce new event file representations, E-t maps and E-t-dt cubes, that effectively encode both temporal and spectral information, enabling the seamless application of machine learning to variable-length event file time series. Our unsupervised learning approach employs PCA or sparse autoencoders to extract low-dimensional, informative features from these data representations, followed by clustering in the embedding space with DBSCAN. New transients are identified within transient-dominant clusters or through nearest-neighbour searches around known transients, producing a catalogue of 3559 candidates (3447 flares and 112 dips). XRT 200515 exhibits unique temporal and spectral variability, including an intense, hard <10s initial burst, followed by spectral softening in an ~800s oscillating tail. We interpret XRT 200515 as either the first giant magnetar flare observed at low X-ray energies or the first extragalactic Type I X-ray burst from a faint, previously unknown low-mass X-ray binary in the LMC. Our method extends to data sets from other observatories such as XMM-Newton, Swift-XRT, eROSITA, Einstein Probe, and upcoming missions like AXIS.
Related papers
- Superpowering Open-Vocabulary Object Detectors for X-ray Vision [53.07098133237041]
Open-vocabulary object detection (OvOD) is set to revolutionize security screening by enabling systems to recognize any item in X-ray scans.
We propose RAXO, a framework that repurposes off-the-shelf RGB OvOD detectors for robust X-ray detection.
RAXO builds high-quality X-ray class descriptors using a dual-source retrieval strategy.
arXiv Detail & Related papers (2025-03-21T11:54:16Z) - X-LRM: X-ray Large Reconstruction Model for Extremely Sparse-View Computed Tomography Recovery in One Second [52.11676689269379]
Sparse-view 3D CT reconstruction aims to recover structures from a limited number of 2D X-ray projections.
Existing feedforward methods are constrained by the limited capacity of CNN-based architectures and the scarcity of large-scale training datasets.
We propose an X-ray Large Reconstruction Model (X-LRM) for extremely sparse-view (10 views) CT reconstruction.
arXiv Detail & Related papers (2025-03-09T01:39:59Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis [88.86777314004044]
We propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view visualization.
Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed.
arXiv Detail & Related papers (2024-03-07T00:12:08Z) - Deep Learning for Gamma-Ray Bursts: A data driven event framework for
X/Gamma-Ray analysis in space telescopes [2.4666310814233703]
This thesis is dedicated to providing an overview of Gamma Ray-Bursts (GRBs), their properties, the instrumentation used to detect them, and Artificial Intelligence (AI) applications.
Considering both the current and the next generation of high X-ray monitors, such as Fermi-GBM and HERMES Pathfinder, the research question revolves around the detection of long and faint high-energy transients.
To address this, two chapters introduce a new data-driven framework, DeepGRB.
arXiv Detail & Related papers (2024-01-28T11:49:57Z) - Rapid detection of rare events from in situ X-ray diffraction data using
machine learning [3.793863205903028]
High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials.
These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots over time of the evolving microstructure and attributes.
Here we present a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data.
arXiv Detail & Related papers (2023-12-07T02:14:39Z) - Searching for long faint astronomical high energy transients: a data
driven approach [1.5851170136095292]
We introduce a new framework to assess the background count rate of a space-born, high energy detector.
We employ a Neural Network (NN) to estimate the background lightcurves on different timescales.
We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder.
arXiv Detail & Related papers (2023-03-28T12:47:00Z) - Sionna RT: Differentiable Ray Tracing for Radio Propagation Modeling [65.17711407805756]
Sionna is a GPU-accelerated open-source library for link-level simulations based on.
Since release v0.14 it integrates a differentiable ray tracer (RT) for the simulation of radio wave propagation.
arXiv Detail & Related papers (2023-03-20T13:40:11Z) - Computer-aided Tuberculosis Diagnosis with Attribute Reasoning
Assistance [58.01014026139231]
We propose a new large-scale tuberculosis (TB) chest X-ray dataset (TBX-Att)
We establish an attribute-assisted weakly-supervised framework to classify and localize TB by leveraging the attribute information.
The proposed model is evaluated on the TBX-Att dataset and will serve as a solid baseline for future research.
arXiv Detail & Related papers (2022-07-01T07:50:35Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - Real-time detection of anomalies in large-scale transient surveys [0.0]
We present two novel methods of automatically detecting anomalous transient light curves in real-time.
Both methods are based on the simple idea that if the light curves from a known population of transients can be accurately modelled, any deviations from model predictions are likely anomalies.
arXiv Detail & Related papers (2021-10-29T18:29:25Z) - A Deep Learning Approach for Active Anomaly Detection of Extragalactic
Transients [1.7152709285783647]
We present a variational recurrent autoencoder neural network to encode simulated Rubin Observatory extragalactic transient events.
We rank 1,129,184 events based on an anomaly score estimated using an isolation forest.
Our algorithm is able to identify these transients as anomalous well before peak, enabling real-time follow up studies.
arXiv Detail & Related papers (2021-03-22T18:02:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.