SailCompass: Towards Reproducible and Robust Evaluation for Southeast Asian Languages
- URL: http://arxiv.org/abs/2412.01186v1
- Date: Mon, 02 Dec 2024 06:42:51 GMT
- Title: SailCompass: Towards Reproducible and Robust Evaluation for Southeast Asian Languages
- Authors: Jia Guo, Longxu Dou, Guangtao Zeng, Stanley Kok, Wei Lu, Qian Liu,
- Abstract summary: We introduce Sail, a reproducible and robust evaluation benchmark for assessing Large Language Models (LLMs) on Southeast Asian languages (SEA)<n>Sail encompasses three main SEA languages, eight primary tasks including 14 datasets covering three task types (generation, multiple-choice questions, and classification)
- Score: 28.850331326601886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce SailCompass, a reproducible and robust evaluation benchmark for assessing Large Language Models (LLMs) on Southeast Asian Languages (SEA). SailCompass encompasses three main SEA languages, eight primary tasks including 14 datasets covering three task types (generation, multiple-choice questions, and classification). To improve the robustness of the evaluation approach, we explore different prompt configurations for multiple-choice questions and leverage calibrations to improve the faithfulness of classification tasks. With SailCompass, we derive the following findings: (1) SEA-specialized LLMs still outperform general LLMs, although the gap has narrowed; (2) A balanced language distribution is important for developing better SEA-specialized LLMs; (3) Advanced prompting techniques (e.g., calibration, perplexity-based ranking) are necessary to better utilize LLMs. All datasets and evaluation scripts are public.
Related papers
- PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts [79.84059473102778]
PolyMath is a multilingual mathematical reasoning benchmark covering 18 languages and 4 easy-to-hard difficulty levels.
Our benchmark ensures difficulty comprehensiveness, language diversity, and high-quality translation.
arXiv Detail & Related papers (2025-04-25T15:39:04Z) - IberBench: LLM Evaluation on Iberian Languages [2.3034630097498883]
Large Language Models (LLMs) are difficult to evaluate comprehensively, particularly for languages other than English.
We present IberBench, a benchmark designed to assess LLM performance on both fundamental and industry-relevant NLP tasks.
We evaluate 23 LLMs ranging from 100 million to 14 billion parameters and provide empirical insights into their strengths and limitations.
arXiv Detail & Related papers (2025-04-23T17:48:25Z) - Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English [66.97110551643722]
We investigate dialectal disparities in Large Language Models (LLMs) reasoning tasks.
We find that LLMs produce less accurate responses and simpler reasoning chains and explanations for AAE inputs.
These findings highlight systematic differences in how LLMs process and reason about different language varieties.
arXiv Detail & Related papers (2025-03-06T05:15:34Z) - SEA-HELM: Southeast Asian Holistic Evaluation of Language Models [2.119348427296952]
SEA-HELM is a comprehensive and authentic evaluation suite for languages in the Southeast Asian (SEA) region.
It comprises five core pillars: (1) NLP Classics, (2) LLM-specifics, (3) SEA Linguistics, (4) SEA Culture, (5) Safety.
SEA-HELM currently supports Filipino, Indonesian, Tamil, Thai, and Vietnamese.
arXiv Detail & Related papers (2025-02-20T06:32:45Z) - SeaExam and SeaBench: Benchmarking LLMs with Local Multilingual Questions in Southeast Asia [72.93218369941734]
This study introduces two novel benchmarks, SeaExam and SeaBench, to evaluate the capabilities of Large Language Models (LLMs) in Southeast Asian (SEA) application scenarios.
Unlike existing multilingual datasets primarily derived from English translations, these benchmarks are constructed based on real-world scenarios from SEA regions.
arXiv Detail & Related papers (2025-02-10T09:40:25Z) - ProverbEval: Exploring LLM Evaluation Challenges for Low-resource Language Understanding [15.93642619347214]
We introduce ProverbEval, an evaluation benchmark for low-resource languages based on proverbs.
We benchmark various LLMs and explore factors that create variability in the benchmarking process.
We argue special attention must be given to the order of choices, choice of prompt language, task variability, and generation tasks.
arXiv Detail & Related papers (2024-11-07T06:34:48Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Language Imbalance Driven Rewarding for Multilingual Self-improving [35.1576728251478]
Large Language Models (LLMs) have achieved state-of-the-art performance across numerous tasks.
This imbalance, while limiting broader applications, generates a natural preference ranking between languages.
We propose $textitLanguage Imbalance Driven Rewarding$, where the inherent imbalance between dominant and non-dominant languages is leveraged as a reward signal.
arXiv Detail & Related papers (2024-10-11T16:32:05Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
We investigate how large language models (LLMs) function as rerankers in cross-lingual information retrieval systems for African languages.
Our implementation covers English and four African languages (Hausa, Somali, Swahili, and Yoruba)
We examine cross-lingual reranking with queries in English and passages in the African languages.
arXiv Detail & Related papers (2023-12-26T18:38:54Z) - AlignBench: Benchmarking Chinese Alignment of Large Language Models [99.24597941555277]
We introduce AlignBench, a comprehensive benchmark for evaluating Chinese Large Language Models' alignment.
We design a human-in-the-loop data curation pipeline, containing eight main categories, 683 real-scenario rooted queries and corresponding human verified references.
For automatic evaluation, our benchmark employs a rule-calibrated multi-dimensional LLM-as-Judgecitezheng2023judging approach with Chain-of-Thought to generate explanations and final ratings.
arXiv Detail & Related papers (2023-11-30T17:41:30Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
Large language model (LLM) has excellent performance and wide practical uses.
Existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios.
We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety.
Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system.
arXiv Detail & Related papers (2023-08-15T17:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.