Neuron Abandoning Attention Flow: Visual Explanation of Dynamics inside CNN Models
- URL: http://arxiv.org/abs/2412.01202v1
- Date: Mon, 02 Dec 2024 07:14:15 GMT
- Title: Neuron Abandoning Attention Flow: Visual Explanation of Dynamics inside CNN Models
- Authors: Yi Liao, Yongsheng Gao, Weichuan Zhang,
- Abstract summary: A novel cascading neuron abandoning back-propagation algorithm is designed to trace neurons in all layers of a CNN.
The proposed NAFlow is validated on nine widely-used CNN models for various tasks of general image classification, contrastive learning classification, few-shot image classification, and image retrieval.
- Score: 22.985326983068582
- License:
- Abstract: In this paper, we present a Neuron Abandoning Attention Flow (NAFlow) method to address the open problem of visually explaining the attention evolution dynamics inside CNNs when making their classification decisions. A novel cascading neuron abandoning back-propagation algorithm is designed to trace neurons in all layers of a CNN that involve in making its prediction to address the problem of significant interference from abandoned neurons. Firstly, a Neuron Abandoning Back-Propagation (NA-BP) module is proposed to generate Back-Propagated Feature Maps (BPFM) by using the inverse function of the intermediate layers of CNN models, on which the neurons not used for decision-making are abandoned. Meanwhile, the cascading NA-BP modules calculate the tensors of importance coefficients which are linearly combined with the tensors of BPFMs to form the NAFlow. Secondly, to be able to visualize attention flow for similarity metric-based CNN models, a new channel contribution weights module is proposed to calculate the importance coefficients via Jacobian Matrix. The effectiveness of the proposed NAFlow is validated on nine widely-used CNN models for various tasks of general image classification, contrastive learning classification, few-shot image classification, and image retrieval.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Spiking neural networks with Hebbian plasticity for unsupervised
representation learning [0.0]
We introduce a novel spiking neural network model for learning distributed internal representations from data in an unsupervised procedure.
We employ an online correlation-based Hebbian-Bayesian learning and rewiring mechanism, shown previously to perform representation learning, into a spiking neural network.
We show performance close to the non-spiking BCPNN, and competitive with other Hebbian-based spiking networks when trained on MNIST and F-MNIST machine learning benchmarks.
arXiv Detail & Related papers (2023-05-05T22:34:54Z) - PCACE: A Statistical Approach to Ranking Neurons for CNN
Interpretability [1.0742675209112622]
We present a new statistical method for ranking the hidden neurons in any convolutional layer of a network.
We show a real-world application of our method to air pollution prediction with street-level images.
arXiv Detail & Related papers (2021-12-31T17:54:57Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Tensor-based framework for training flexible neural networks [9.176056742068813]
We propose a new learning algorithm which solves a constrained coupled matrix-tensor factorization (CMTF) problem.
The proposed algorithm can handle different bases decomposition.
The goal of this method is to compress large pretrained NN models, by replacing tensorworks, em i.e., one or multiple layers of the original network, by a new flexible layer.
arXiv Detail & Related papers (2021-06-25T10:26:48Z) - Examining convolutional feature extraction using Maximum Entropy (ME)
and Signal-to-Noise Ratio (SNR) for image classification [0.6875312133832078]
Convolutional Neural Networks (CNNs) specialize in feature extraction rather than function mapping.
In this paper, we examine the feature extraction capabilities of CNNs using Maximum Entropy (ME) and Signal-to-Noise Ratio (SNR)
We show that the classification accuracy or performance of CNNs is greatly dependent on the amount, complexity and quality of the signal information present in the input data.
arXiv Detail & Related papers (2021-05-10T03:58:06Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
Spiking Neural Networks (SNNs) have the unique ability to detect information in encoded-temporal signals.
We review models and training algorithms for the dominant approach that considers SNNs as a Recurrent Neural Network (RNN)
We describe an alternative approach that relies on probabilistic models for spiking neurons, allowing the derivation of local learning rules via gradient estimates.
arXiv Detail & Related papers (2020-10-27T11:47:42Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
We instantiate this design on convolutional neural networks (CNNs)
In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.
arXiv Detail & Related papers (2020-07-17T19:32:48Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.