Variational formulation based on duality to solve partial differential equations: Use of B-splines and machine learning approximants
- URL: http://arxiv.org/abs/2412.01232v1
- Date: Mon, 02 Dec 2024 07:53:47 GMT
- Title: Variational formulation based on duality to solve partial differential equations: Use of B-splines and machine learning approximants
- Authors: N. Sukumar, Amit Acharya,
- Abstract summary: Partial differential equations (PDEs) in fluid mechanics, inelastic deformation in solids, and transient parabolic and hyperbolic equations do not have an exact, primal variational structure.
A variational principle based on the dual (Lagrange multiplier) field was proposed to treat the given PDE as constraints.
The vanishing of the first variation of the dual functional is, up to Dirichlet boundary conditions on dual fields, the weak form of the primal PDE problem.
We derive the dual weak form for the linear, one-dimensional, transient convection-diffusion equation.
- Score: 0.0
- License:
- Abstract: Many partial differential equations (PDEs) such as Navier--Stokes equations in fluid mechanics, inelastic deformation in solids, and transient parabolic and hyperbolic equations do not have an exact, primal variational structure. Recently, a variational principle based on the dual (Lagrange multiplier) field was proposed. The essential idea in this approach is to treat the given PDE as constraints, and to invoke an arbitrarily chosen auxiliary potential with strong convexity properties to be optimized. This leads to requiring a convex dual functional to be minimized subject to Dirichlet boundary conditions on dual variables, with the guarantee that even PDEs that do not possess a variational structure in primal form can be solved via a variational principle. The vanishing of the first variation of the dual functional is, up to Dirichlet boundary conditions on dual fields, the weak form of the primal PDE problem with the dual-to-primal change of variables incorporated. We derive the dual weak form for the linear, one-dimensional, transient convection-diffusion equation. A Galerkin discretization is used to obtain the discrete equations, with the trial and test functions chosen as linear combination of either RePU activation functions (shallow neural network) or B-spline basis functions; the corresponding stiffness matrix is symmetric. For transient problems, a space-time Galerkin implementation is used with tensor-product B-splines as approximating functions. Numerical results are presented for the steady-state and transient convection-diffusion equation, and transient heat conduction. The proposed method delivers sound accuracy for ODEs and PDEs and rates of convergence are established in the $L^2$ norm and $H^1$ seminorm for the steady-state convection-diffusion problem.
Related papers
- A Deep Learning approach for parametrized and time dependent Partial Differential Equations using Dimensionality Reduction and Neural ODEs [46.685771141109306]
We propose an autoregressive and data-driven method using the analogy with classical numerical solvers for time-dependent, parametric and (typically) nonlinear PDEs.
We show that by leveraging DR we can deliver not only more accurate predictions, but also a considerably lighter and faster Deep Learning model.
arXiv Detail & Related papers (2025-02-12T11:16:15Z) - Mathematics of Digital Twins and Transfer Learning for PDE Models [49.1574468325115]
We define a digital twin (DT) of a physical system governed by partial differential equations (PDEs)
We construct DTs using the Karhunen-Loeve Neural Network (KL-NN) surrogate model and transfer learning (TL)
arXiv Detail & Related papers (2025-01-11T01:14:15Z) - Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Variational Equations-of-States for Interacting Quantum Hamiltonians [0.0]
We present variational equations of state (VES) for pure states of an interacting quantum Hamiltonian.
VES can be expressed in terms of the variation of the density operators or static correlation functions.
We present three nontrivial applications of the VES.
arXiv Detail & Related papers (2023-07-03T07:51:15Z) - Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers [32.57938108395521]
A class of mechanistic models, Linear partial differential equations, are used to describe physical processes such as heat transfer, electromagnetism, and wave propagation.
specialized numerical methods based on discretization are used to solve PDEs.
By ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error.
arXiv Detail & Related papers (2022-12-23T17:02:59Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution
Differential Equations [83.3201889218775]
Several widely-used first-order saddle-point optimization methods yield an identical continuous-time ordinary differential equation (ODE) when derived naively.
However, the convergence properties of these methods are qualitatively different, even on simple bilinear games.
We adopt a framework studied in fluid dynamics to design differential equation models for several saddle-point optimization methods.
arXiv Detail & Related papers (2021-12-27T18:31:34Z) - Model Reduction of Swing Equations with Physics Informed PDE [3.3263205689999444]
This manuscript is the first step towards building a robust and efficient model reduction methodology to capture transient dynamics in a transmission level electric power system.
We show that, when properly coarse-grained, i.e. with the PDE coefficients and source terms extracted from a spatial convolution procedure of the respective discrete coefficients in the swing equations, the resulting PDE reproduces faithfully and efficiently the original swing dynamics.
arXiv Detail & Related papers (2021-10-26T22:46:20Z) - Solving and Learning Nonlinear PDEs with Gaussian Processes [11.09729362243947]
We introduce a simple, rigorous, and unified framework for solving nonlinear partial differential equations.
The proposed approach provides a natural generalization of collocation kernel methods to nonlinear PDEs and IPs.
For IPs, while the traditional approach has been to iterate between the identifications of parameters in the PDE and the numerical approximation of its solution, our algorithm tackles both simultaneously.
arXiv Detail & Related papers (2021-03-24T03:16:08Z) - Exponentially Weighted l_2 Regularization Strategy in Constructing
Reinforced Second-order Fuzzy Rule-based Model [72.57056258027336]
In the conventional Takagi-Sugeno-Kang (TSK)-type fuzzy models, constant or linear functions are usually utilized as the consequent parts of the fuzzy rules.
We introduce an exponential weight approach inspired by the weight function theory encountered in harmonic analysis.
arXiv Detail & Related papers (2020-07-02T15:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.