Best Practices for Large Language Models in Radiology
- URL: http://arxiv.org/abs/2412.01233v1
- Date: Mon, 02 Dec 2024 07:54:55 GMT
- Title: Best Practices for Large Language Models in Radiology
- Authors: Christian Bluethgen, Dave Van Veen, Cyril Zakka, Katherine Link, Aaron Fanous, Roxana Daneshjou, Thomas Frauenfelder, Curtis Langlotz, Sergios Gatidis, Akshay Chaudhari,
- Abstract summary: Nuanced application of language is key for various activities.
The emergence of large language models (LLMs) offers an opportunity to improve the management and interpretation of the vast data in radiology.
- Score: 4.972411560978282
- License:
- Abstract: At the heart of radiological practice is the challenge of integrating complex imaging data with clinical information to produce actionable insights. Nuanced application of language is key for various activities, including managing requests, describing and interpreting imaging findings in the context of clinical data, and concisely documenting and communicating the outcomes. The emergence of large language models (LLMs) offers an opportunity to improve the management and interpretation of the vast data in radiology. Despite being primarily general-purpose, these advanced computational models demonstrate impressive capabilities in specialized language-related tasks, even without specific training. Unlocking the potential of LLMs for radiology requires basic understanding of their foundations and a strategic approach to navigate their idiosyncrasies. This review, drawing from practical radiology and machine learning expertise and recent literature, provides readers insight into the potential of LLMs in radiology. It examines best practices that have so far stood the test of time in the rapidly evolving landscape of LLMs. This includes practical advice for optimizing LLM characteristics for radiology practices along with limitations, effective prompting, and fine-tuning strategies.
Related papers
- Can Modern LLMs Act as Agent Cores in Radiology Environments? [54.36730060680139]
Large language models (LLMs) offer enhanced accuracy and interpretability across various domains.
This paper aims to investigate the pre-requisite question for building concrete radiology agents.
We present RadABench-Data, a comprehensive synthetic evaluation dataset for LLM-based agents.
Second, we propose RadABench-EvalPlat, a novel evaluation platform for agents featuring a prompt-driven workflow.
arXiv Detail & Related papers (2024-12-12T18:20:16Z) - MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
This paper presents an advanced radiology-focused large language model: MGH Radiology Llama.
It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2.
Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
arXiv Detail & Related papers (2024-08-13T01:30:03Z) - D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
We propose D-Rax -- a domain-specific, conversational, radiologic assistance tool.
We enhance the conversational analysis of chest X-ray (CXR) images to support radiological reporting.
We observe statistically significant improvement in responses when evaluated for both open and close-ended conversations.
arXiv Detail & Related papers (2024-07-02T18:43:10Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
We develop a novel method for zero-shot/few-shot in-context learning (ICL) using a multi-layered structured prompt.
We also explore the efficacy of two communication styles between the user and Large Language Models (LLMs)
Our study systematically evaluates the diagnostic accuracy and risk factors, including gender bias and false negative rates.
arXiv Detail & Related papers (2024-05-10T06:52:44Z) - Effectively Fine-tune to Improve Large Multimodal Models for Radiology
Report Generation [8.788649244412591]
Large Language Models (LLM) have demonstrated impressive capabilities recently.
We propose a simple yet effective two-stage fine-tuning protocol to align visual features to LLM's text embedding space as soft visual prompts.
Our framework with OpenLLaMA-7B achieved state-of-the-art level performance without domain-specific pretraining.
arXiv Detail & Related papers (2023-12-03T20:42:38Z) - LLM-driven Multimodal Target Volume Contouring in Radiation Oncology [46.23891509553877]
Large language models (LLMs) can facilitate the integration of the textural information and images.
We present a novel LLM-driven multimodal AI, namely LLMSeg, that is applicable to the challenging task of target volume contouring for radiation therapy.
We demonstrate that the proposed model exhibits markedly improved performance compared to conventional unimodal AI models.
arXiv Detail & Related papers (2023-11-03T13:38:42Z) - Radiology-Llama2: Best-in-Class Large Language Model for Radiology [71.27700230067168]
This paper introduces Radiology-Llama2, a large language model specialized for radiology through a process known as instruction tuning.
Quantitative evaluations using ROUGE metrics on the MIMIC-CXR and OpenI datasets demonstrate that Radiology-Llama2 achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-08-29T17:44:28Z) - Radiology-GPT: A Large Language Model for Radiology [74.07944784968372]
We introduce Radiology-GPT, a large language model for radiology.
It demonstrates superior performance compared to general language models such as StableLM, Dolly and LLaMA.
It exhibits significant versatility in radiological diagnosis, research, and communication.
arXiv Detail & Related papers (2023-06-14T17:57:24Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.