RL2: Reinforce Large Language Model to Assist Safe Reinforcement Learning for Energy Management of Active Distribution Networks
- URL: http://arxiv.org/abs/2412.01303v1
- Date: Mon, 02 Dec 2024 09:15:36 GMT
- Title: RL2: Reinforce Large Language Model to Assist Safe Reinforcement Learning for Energy Management of Active Distribution Networks
- Authors: Xu Yang, Chenhui Lin, Haotian Liu, Wenchuan Wu,
- Abstract summary: Large language models (LLMs) provide a promising way to assist safe RL for energy management in ADNs.
We propose an RL2 mechanism to refine the generated functions iteratively and adaptively through multi-round dialogues.
- Score: 12.205847538487433
- License:
- Abstract: As large-scale distributed energy resources are integrated into the active distribution networks (ADNs), effective energy management in ADNs becomes increasingly prominent compared to traditional distribution networks. Although advanced reinforcement learning (RL) methods, which alleviate the burden of complicated modelling and optimization, have greatly improved the efficiency of energy management in ADNs, safety becomes a critical concern for RL applications in real-world problems. Since the design and adjustment of penalty functions, which correspond to operational safety constraints, requires extensive domain knowledge in RL and power system operation, the emerging ADN operators call for a more flexible and customized approach to address the penalty functions so that the operational safety and efficiency can be further enhanced. Empowered with strong comprehension, reasoning, and in-context learning capabilities, large language models (LLMs) provide a promising way to assist safe RL for energy management in ADNs. In this paper, we introduce the LLM to comprehend operational safety requirements in ADNs and generate corresponding penalty functions. In addition, we propose an RL2 mechanism to refine the generated functions iteratively and adaptively through multi-round dialogues, in which the LLM agent adjusts the functions' pattern and parameters based on training and test performance of the downstream RL agent. The proposed method significantly reduces the intervention of the ADN operators. Comprehensive test results demonstrate the effectiveness of the proposed method.
Related papers
- Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
We present SARMTO, a framework that balances resource allocation, task offloading, security, and performance.
SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs.
These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments.
arXiv Detail & Related papers (2025-01-20T15:52:43Z) - Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
A novel adversarial imitation learning (GAIL)-powered policy learning approach is proposed for optimizing beamforming, spectrum allocation, and remote user equipment (RUE) association ins.
We employ inverse RL (IRL) to automatically learn reward functions without manual tuning.
We show that the proposed MA-AL method outperforms traditional RL approaches, achieving a $14.6%$ improvement in convergence and reward value.
arXiv Detail & Related papers (2024-09-27T13:05:02Z) - RL-ADN: A High-Performance Deep Reinforcement Learning Environment for Optimal Energy Storage Systems Dispatch in Active Distribution Networks [0.0]
Deep Reinforcement Learning (DRL) presents a promising avenue for optimizing Energy Storage Systems (ESSs) dispatch in distribution networks.
This paper introduces RL-ADN, an innovative open-source library specifically designed for solving the optimal ESSs dispatch in active distribution networks.
arXiv Detail & Related papers (2024-08-07T10:53:07Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to fluctuations in dynamic prices, demand consumption, and renewable-based energy generation.
By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks' nature.
We propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation.
arXiv Detail & Related papers (2023-07-26T17:12:04Z) - Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning [0.0]
We propose a sophisticated deep reinforcement learning (DRL) methodology with a policy-based algorithm to plan energy storage systems (ESS)
A quantitative performance comparison proved that the DRL agent outperforms the scenario-based optimization (SO) algorithm.
The corresponding results confirmed that the DRL agent learns the way like what a human expert would do, suggesting reliable application of the proposed methodology.
arXiv Detail & Related papers (2022-12-12T02:24:50Z) - Curriculum Based Reinforcement Learning of Grid Topology Controllers to
Prevent Thermal Cascading [0.19116784879310028]
This paper describes how domain knowledge of power system operators can be integrated into reinforcement learning frameworks.
A curriculum-based approach with reward tuning is incorporated into the training procedure by modifying the environment.
A parallel training approach on multiple scenarios is employed to avoid biasing the agent to a few scenarios and make it robust to the natural variability in grid operations.
arXiv Detail & Related papers (2021-12-18T20:32:05Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.