MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models
- URL: http://arxiv.org/abs/2412.01343v1
- Date: Mon, 02 Dec 2024 10:07:59 GMT
- Title: MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models
- Authors: Xiaomin Li, Xu Jia, Qinghe Wang, Haiwen Diao, Mengmeng Ge, Pengxiang Li, You He, Huchuan Lu,
- Abstract summary: MoTrans is a customized motion transfer method enabling video generation of similar motion in new context.
multimodal representations from recaptioned prompt and video frames promote the modeling of appearance.
Our method effectively learns specific motion pattern from singular or multiple reference videos.
- Score: 59.10171699717122
- License:
- Abstract: Existing pretrained text-to-video (T2V) models have demonstrated impressive abilities in generating realistic videos with basic motion or camera movement. However, these models exhibit significant limitations when generating intricate, human-centric motions. Current efforts primarily focus on fine-tuning models on a small set of videos containing a specific motion. They often fail to effectively decouple motion and the appearance in the limited reference videos, thereby weakening the modeling capability of motion patterns. To this end, we propose MoTrans, a customized motion transfer method enabling video generation of similar motion in new context. Specifically, we introduce a multimodal large language model (MLLM)-based recaptioner to expand the initial prompt to focus more on appearance and an appearance injection module to adapt appearance prior from video frames to the motion modeling process. These complementary multimodal representations from recaptioned prompt and video frames promote the modeling of appearance and facilitate the decoupling of appearance and motion. In addition, we devise a motion-specific embedding for further enhancing the modeling of the specific motion. Experimental results demonstrate that our method effectively learns specific motion pattern from singular or multiple reference videos, performing favorably against existing methods in customized video generation.
Related papers
- VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models [71.9811050853964]
VideoJAM is a novel framework that instills an effective motion prior to video generators.
VideoJAM achieves state-of-the-art performance in motion coherence.
These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation.
arXiv Detail & Related papers (2025-02-04T17:07:10Z) - Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models [18.41701130228042]
Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept.
This paper proposes two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH)
arXiv Detail & Related papers (2025-01-28T05:40:20Z) - MotionFlow: Attention-Driven Motion Transfer in Video Diffusion Models [3.2311303453753033]
We introduce MotionFlow, a novel framework designed for motion transfer in video diffusion models.
Our method utilizes cross-attention maps to accurately capture and manipulate spatial and temporal dynamics.
Our experiments demonstrate that MotionFlow significantly outperforms existing models in both fidelity and versatility even during drastic scene alterations.
arXiv Detail & Related papers (2024-12-06T18:59:12Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.
We translate high-level user requests into detailed, semi-dense motion prompts.
We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - NewMove: Customizing text-to-video models with novel motions [74.9442859239997]
We introduce an approach for augmenting text-to-video generation models with customized motions.
By leveraging a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios.
arXiv Detail & Related papers (2023-12-07T18:59:03Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) is a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models.
Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference.
We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts.
arXiv Detail & Related papers (2023-12-01T06:50:11Z) - MotionDirector: Motion Customization of Text-to-Video Diffusion Models [24.282240656366714]
Motion Customization aims to adapt existing text-to-video diffusion models to generate videos with customized motion.
We propose MotionDirector, with a dual-path LoRAs architecture to decouple the learning of appearance and motion.
Our method also supports various downstream applications, such as the mixing of different videos with their appearance and motion respectively, and animating a single image with customized motions.
arXiv Detail & Related papers (2023-10-12T16:26:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.