A Survey on Deep Neural Networks in Collaborative Filtering Recommendation Systems
- URL: http://arxiv.org/abs/2412.01378v1
- Date: Mon, 02 Dec 2024 11:06:34 GMT
- Title: A Survey on Deep Neural Networks in Collaborative Filtering Recommendation Systems
- Authors: Pang Li, Shahrul Azman Mohd Noah, Hafiz Mohd Sarim,
- Abstract summary: The paper examines the use of Deep Neural Networks (DNN) in Collaborative Filtering (CF) recommendation systems.
DNNs can effectively model complex, non-linear relationships within the data.
The paper concludes with a discussion of the challenges and future research opportunities in enhancing collaborative filtering systems with deep learning.
- Score: 0.24578723416255746
- License:
- Abstract: This survey provides an examination of the use of Deep Neural Networks (DNN) in Collaborative Filtering (CF) recommendation systems. As the digital world increasingly relies on data-driven approaches, traditional CF techniques face limitations in scalability and flexibility. DNNs can address these challenges by effectively modeling complex, non-linear relationships within the data. We begin by exploring the fundamental principles of both collaborative filtering and deep neural networks, laying the groundwork for understanding their integration. Subsequently, we review key advancements in the field, categorizing various deep learning models that enhance CF systems, including Multilayer Perceptrons (MLP), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Graph Neural Networks (GNN), autoencoders, Generative Adversarial Networks (GAN), and Restricted Boltzmann Machines (RBM). The paper also discusses evaluation protocols, various publicly available auxiliary information, and data features. Furthermore, the survey concludes with a discussion of the challenges and future research opportunities in enhancing collaborative filtering systems with deep learning.
Related papers
- Achieving Network Resilience through Graph Neural Network-enabled Deep Reinforcement Learning [64.20847540439318]
Deep reinforcement learning (DRL) has been widely used in many important tasks of communication networks.
Some studies have combined graph neural networks (GNNs) with DRL, which use the GNNs to extract unstructured features of the network.
This paper explores the solution of combining GNNs with DRL to build a resilient network.
arXiv Detail & Related papers (2025-01-19T15:22:17Z) - The Master Key Filters Hypothesis: Deep Filters Are General [51.900488744931785]
Convolutional neural network (CNN) filters become increasingly specialized in deeper layers.
Recent observations of clusterable repeating patterns in depthwise separable CNNs (DS-CNNs) trained on ImageNet motivated this paper.
Our analysis of DS-CNNs reveals that deep filters maintain generality, contradicting the expected transition to class-specific filters.
arXiv Detail & Related papers (2024-12-21T20:04:23Z) - Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures.
In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning.
arXiv Detail & Related papers (2024-04-17T08:42:42Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Model-Agnostic Reachability Analysis on Deep Neural Networks [25.54542656637704]
We develop a model-agnostic verification framework, called DeepAgn.
It can be applied to FNNs, Recurrent Neural Networks (RNNs), or a mixture of both.
It does not require access to the network's internal structures, such as layers and parameters.
arXiv Detail & Related papers (2023-04-03T09:01:59Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
We use Complex Network Theory to represent Deep Neural Networks (DNNs) as directed weighted graphs.
We introduce metrics to study DNNs as dynamical systems, with a granularity that spans from weights to layers, including neurons.
We show that our metrics discriminate low vs. high performing networks.
arXiv Detail & Related papers (2022-09-12T16:26:04Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Evolving Deep Neural Networks for Collaborative Filtering [3.302151868255641]
Collaborative Filtering (CF) is widely used in recommender systems to model user-item interactions.
We introduce the genetic algorithm into the process of designing Deep Neural Networks (DNNs)
arXiv Detail & Related papers (2021-11-15T13:57:31Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - Deep Neural Networks and Neuro-Fuzzy Networks for Intellectual Analysis
of Economic Systems [0.0]
We consider approaches for time series forecasting based on deep neural networks and neuro-fuzzy nets.
This paper presents also an overview of approaches for incorporating rule-based methodology into deep learning neural networks.
arXiv Detail & Related papers (2020-11-11T06:21:08Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.