Learning Differential Pyramid Representation for Tone Mapping
- URL: http://arxiv.org/abs/2412.01463v1
- Date: Mon, 02 Dec 2024 12:59:46 GMT
- Title: Learning Differential Pyramid Representation for Tone Mapping
- Authors: Qirui Yang, Yinbo Li, Peng-Tao Jiang, Qihua Cheng, Biting Yu, Yihao Liu, Huanjing Yue, Jingyu Yang,
- Abstract summary: We introduce a learnable Differential Pyramid Representation Network (DPRNet)
DPRNet can capture detailed textures and structures, which is crucial for high-quality tone mapping recovery.
In addition, to achieve global consistency and local contrast, we design a global tone perception module and a local tone tuning module.
- Score: 17.030166961019166
- License:
- Abstract: Previous tone mapping methods mainly focus on how to enhance tones in low-resolution images and recover details using the high-frequent components extracted from the input image. These methods typically rely on traditional feature pyramids to artificially extract high-frequency components, such as Laplacian and Gaussian pyramids with handcrafted kernels. However, traditional handcrafted features struggle to effectively capture the high-frequency components in HDR images, resulting in excessive smoothing and loss of detail in the output image. To mitigate the above issue, we introduce a learnable Differential Pyramid Representation Network (DPRNet). Based on the learnable differential pyramid, our DPRNet can capture detailed textures and structures, which is crucial for high-quality tone mapping recovery. In addition, to achieve global consistency and local contrast harmonization, we design a global tone perception module and a local tone tuning module that ensure the consistency of global tuning and the accuracy of local tuning, respectively. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art methods, improving PSNR by 2.58 dB in the HDR+ dataset and 3.31 dB in the HDRI Haven dataset respectively compared with the second-best method. Notably, our method exhibits the best generalization ability in the non-homologous image and video tone mapping operation. We provide an anonymous online demo at https://xxxxxx2024.github.io/DPRNet/.
Related papers
- Semantic Aware Diffusion Inverse Tone Mapping [5.65968650127342]
Inverse tone mapping attempts to boost captured Standard Dynamic Range (SDR) images back to High Dynamic Range ( HDR)
We present a novel inverse tone mapping approach for mapping SDR images to HDR that generates lost details in clipped regions through a semantic-aware diffusion based inpainting approach.
arXiv Detail & Related papers (2024-05-24T11:44:22Z) - Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
We introduce Hi-Map, a novel monocular dense mapping approach based on Neural Radiance Field (NeRF)
Hi-Map is exceptional in its capacity to achieve efficient and high-fidelity mapping using only posed RGB inputs.
arXiv Detail & Related papers (2024-01-06T12:32:25Z) - Lookup Table meets Local Laplacian Filter: Pyramid Reconstruction
Network for Tone Mapping [35.47139372780014]
This paper explores a novel strategy that integrates global and local operators by utilizing closed-form Laplacian pyramid decomposition and reconstruction.
We employ image-adaptive 3D LUTs to manipulate the tone in the low-frequency image by leveraging the specific characteristics of the frequency information.
We also utilize local Laplacian filters to refine the edge details in the high-frequency components in an adaptive manner.
arXiv Detail & Related papers (2023-10-26T07:05:38Z) - Pyramid Texture Filtering [86.15126028139736]
We present a simple but effective technique to smooth out textures while preserving the prominent structures.
Our method is built upon a key observation -- the coarsest level in a Gaussian pyramid often naturally eliminates textures and summarizes the main image structures.
We show that our approach is effective to separate structure from texture of different scales, local contrasts, and forms, without degrading structures or introducing visual artifacts.
arXiv Detail & Related papers (2023-05-11T02:05:30Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - FRIH: Fine-grained Region-aware Image Harmonization [49.420765789360836]
We propose a novel global-local two stages framework for Fine-grained Region-aware Image Harmonization (FRIH)
Our algorithm achieves the best performance on iHarmony4 dataset (PSNR is 38.19 dB) with a lightweight model.
arXiv Detail & Related papers (2022-05-13T04:50:26Z) - Perceptually Optimized Deep High-Dynamic-Range Image Tone Mapping [44.00069411131762]
We first decompose an HDR image into a normalized Laplacian pyramid, and use two deep neural networks (DNNs) to estimate the Laplacian pyramid of the desired tone-mapped image from the normalized representation.
We then end-to-end optimize the entire method over a database of HDR images by minimizing the normalized Laplacian pyramid distance.
arXiv Detail & Related papers (2021-09-01T04:17:31Z) - High-Resolution Photorealistic Image Translation in Real-Time: A
Laplacian Pyramid Translation Network [23.981019687483506]
We focus on speeding-up the high-resolution photorealistic I2IT tasks based on closed-form Laplacian pyramid decomposition and reconstruction.
We propose a Laplacian Pyramid Translation Network (N) to simultaneously perform these two tasks.
Our model avoids most of the heavy computation consumed by processing high-resolution feature maps and faithfully preserves the image details.
arXiv Detail & Related papers (2021-05-19T15:05:22Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Deep Reformulated Laplacian Tone Mapping [6.078183247169192]
Wide dynamic range (WDR) images contain more scene details and contrast when compared to common images.
The details of WDR images can diminish during the tone mapping process.
In this work, we address the problem by combining a novel reformulated Laplacian pyramid and deep learning.
arXiv Detail & Related papers (2021-01-31T01:18:20Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.