6DOPE-GS: Online 6D Object Pose Estimation using Gaussian Splatting
- URL: http://arxiv.org/abs/2412.01543v1
- Date: Mon, 02 Dec 2024 14:32:19 GMT
- Title: 6DOPE-GS: Online 6D Object Pose Estimation using Gaussian Splatting
- Authors: Yufeng Jin, Vignesh Prasad, Snehal Jauhri, Mathias Franzius, Georgia Chalvatzaki,
- Abstract summary: We present 6DOPE-GS, a novel method for online 6D object pose estimation & tracking with a single RGB-D camera.
We show that 6DOPE-GS matches the performance of state-of-the-art baselines for model-free simultaneous 6D pose tracking and reconstruction.
We also demonstrate the method's suitability for live, dynamic object tracking and reconstruction in a real-world setting.
- Score: 7.7145084897748974
- License:
- Abstract: Efficient and accurate object pose estimation is an essential component for modern vision systems in many applications such as Augmented Reality, autonomous driving, and robotics. While research in model-based 6D object pose estimation has delivered promising results, model-free methods are hindered by the high computational load in rendering and inferring consistent poses of arbitrary objects in a live RGB-D video stream. To address this issue, we present 6DOPE-GS, a novel method for online 6D object pose estimation \& tracking with a single RGB-D camera by effectively leveraging advances in Gaussian Splatting. Thanks to the fast differentiable rendering capabilities of Gaussian Splatting, 6DOPE-GS can simultaneously optimize for 6D object poses and 3D object reconstruction. To achieve the necessary efficiency and accuracy for live tracking, our method uses incremental 2D Gaussian Splatting with an intelligent dynamic keyframe selection procedure to achieve high spatial object coverage and prevent erroneous pose updates. We also propose an opacity statistic-based pruning mechanism for adaptive Gaussian density control, to ensure training stability and efficiency. We evaluate our method on the HO3D and YCBInEOAT datasets and show that 6DOPE-GS matches the performance of state-of-the-art baselines for model-free simultaneous 6D pose tracking and reconstruction while providing a 5$\times$ speedup. We also demonstrate the method's suitability for live, dynamic object tracking and reconstruction in a real-world setting.
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Advancing 6D Pose Estimation in Augmented Reality -- Overcoming Projection Ambiguity with Uncontrolled Imagery [0.0]
This study addresses the challenge of accurate 6D pose estimation in Augmented Reality (AR)
We propose a novel approach that strategically decomposes the estimation of z-axis translation and focal length.
This methodology not only streamlines the 6D pose estimation process but also significantly enhances the accuracy of 3D object overlaying in AR settings.
arXiv Detail & Related papers (2024-03-20T09:22:22Z) - 3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for
Robust 6D Pose Estimation [50.15926681475939]
Inverse graphics aims to infer the 3D scene structure from 2D images.
We introduce probabilistic modeling to quantify uncertainty and achieve robustness in 6D pose estimation tasks.
3DNEL effectively combines learned neural embeddings from RGB with depth information to improve robustness in sim-to-real 6D object pose estimation from RGB-D images.
arXiv Detail & Related papers (2023-02-07T20:48:35Z) - Learning 6D Pose Estimation from Synthetic RGBD Images for Robotic
Applications [0.6299766708197883]
The proposed pipeline can efficiently generate large amounts of photo-realistic RGBD images for the object of interest.
We develop a real-time two-stage 6D pose estimation approach by integrating the object detector YOLO-V4-tiny and the 6D pose estimation algorithm PVN3D.
The resulting network shows competitive performance compared to state-of-the-art methods when evaluated on LineMod dataset.
arXiv Detail & Related papers (2022-08-30T14:17:15Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - ROFT: Real-Time Optical Flow-Aided 6D Object Pose and Velocity Tracking [7.617467911329272]
We introduce ROFT, a Kalman filtering approach for 6D object pose and velocity tracking from a stream of RGB-D images.
By leveraging real-time optical flow, ROFT synchronizes delayed outputs of low frame rate Convolutional Neural Networks for instance segmentation and 6D object pose estimation.
Results demonstrate that our approach outperforms state-of-the-art methods for 6D object pose tracking, while also providing 6D object velocity tracking.
arXiv Detail & Related papers (2021-11-06T07:30:00Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Pose is a framework for regressing all 6 degrees-of-freedom (6DoF) for the object pose in a cluttered environment from a single RGB image.
We introduce a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects.
Cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness.
arXiv Detail & Related papers (2021-08-18T19:49:29Z) - VIPose: Real-time Visual-Inertial 6D Object Pose Tracking [3.44942675405441]
We introduce a novel Deep Neural Network (DNN) called VIPose to address the object pose tracking problem in real-time.
The key contribution is the design of a novel DNN architecture which fuses visual and inertial features to predict the objects' relative 6D pose.
The approach presents accuracy performances comparable to state-of-the-art techniques, but with additional benefit to be real-time.
arXiv Detail & Related papers (2021-07-27T06:10:23Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
We propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation.
The proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation.
arXiv Detail & Related papers (2021-03-12T03:07:24Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z) - se(3)-TrackNet: Data-driven 6D Pose Tracking by Calibrating Image
Residuals in Synthetic Domains [12.71983073907091]
This work proposes a data-driven optimization approach for long-term, 6D pose tracking.
It aims to identify the optimal relative pose given the current RGB-D observation and a synthetic image conditioned on the previous best estimate and the object's model.
The proposed approach achieves consistently robust estimates and outperforms alternatives, even though they have been trained with real images.
arXiv Detail & Related papers (2020-07-27T21:09:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.