How Much Can Time-related Features Enhance Time Series Forecasting?
- URL: http://arxiv.org/abs/2412.01557v1
- Date: Mon, 02 Dec 2024 14:45:26 GMT
- Title: How Much Can Time-related Features Enhance Time Series Forecasting?
- Authors: Chaolv Zeng, Yuan Tian, Guanjie Zheng, Yunjun Gao,
- Abstract summary: We introduce a module designed to encode time-related features, Time Stamp Forecaster (TimeSter)<n>TimeSter significantly improves the performance of a single linear projector, reducing MSE by an average of 23% on benchmark datasets such as Electricity and Traffic.
- Score: 27.030553080458716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in long-term time series forecasting (LTSF) have primarily focused on capturing cross-time and cross-variate (channel) dependencies within historical data. However, a critical aspect often overlooked by many existing methods is the explicit incorporation of \textbf{time-related features} (e.g., season, month, day of the week, hour, minute), which are essential components of time series data. The absence of this explicit time-related encoding limits the ability of current models to capture cyclical or seasonal trends and long-term dependencies, especially with limited historical input. To address this gap, we introduce a simple yet highly efficient module designed to encode time-related features, Time Stamp Forecaster (TimeSter), thereby enhancing the backbone's forecasting performance. By integrating TimeSter with a linear backbone, our model, TimeLinear, significantly improves the performance of a single linear projector, reducing MSE by an average of 23\% on benchmark datasets such as Electricity and Traffic. Notably, TimeLinear achieves these gains while maintaining exceptional computational efficiency, delivering results that are on par with or exceed state-of-the-art models, despite using a fraction of the parameters.
Related papers
- LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.
Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.
We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a causal Transformer for unified time series forecasting.
Based on large-scale pre-training, Timer-XL achieves state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - MixLinear: Extreme Low Resource Multivariate Time Series Forecasting with 0.1K Parameters [6.733646592789575]
Long-term Time Series Forecasting (LTSF) involves predicting long-term values by analyzing a large amount of historical time-series data to identify patterns and trends.
Transformer-based models offer high forecasting accuracy, but they are often too compute-intensive to be deployed on devices with hardware constraints.
We propose MixLinear, an ultra-lightweight time series forecasting model specifically designed for resource-constrained devices.
arXiv Detail & Related papers (2024-10-02T23:04:57Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters [16.966008476215258]
This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF)
At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data.
SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data.
arXiv Detail & Related papers (2024-05-02T02:15:23Z) - TimeMachine: A Time Series is Worth 4 Mambas for Long-term Forecasting [13.110156202816112]
TimeMachine exploits the unique properties of time series data to produce salient contextual cues at multi-scales.
TimeMachine achieves superior performance in prediction accuracy, scalability, and memory efficiency, as extensively validated using benchmark datasets.
arXiv Detail & Related papers (2024-03-14T22:19:37Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis.
Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation.
Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks.
arXiv Detail & Related papers (2024-01-22T13:15:40Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
Real-world tasks such as forecasting weather, electricity consumption, and stock market involve predicting data that vary over time.
Time-series data are generally recorded over a long period of observation with long sequences owing to their periodic characteristics and long-range dependencies over time.
We propose two novel modules, Grouped Self-Attention (GSA) and Compressed Cross-Attention (CCA)
Our proposed model efficiently exhibited reduced computational complexity and performance comparable to or better than existing methods.
arXiv Detail & Related papers (2022-10-02T06:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.