Multi-objective Deep Learning: Taxonomy and Survey of the State of the Art
- URL: http://arxiv.org/abs/2412.01566v2
- Date: Tue, 03 Dec 2024 08:42:37 GMT
- Title: Multi-objective Deep Learning: Taxonomy and Survey of the State of the Art
- Authors: Sebastian Peitz, Sedjro Salomon Hotegni,
- Abstract summary: This survey covers recent advancements in the area of multi-objective deep learning.
We introduce a taxonomy of existing methods based on the type of training algorithm as well as the decision maker's needs.
All three main learning paradigms supervised learning, unsupervised learning and reinforcement learning are covered, and we also address the recently very popular area of generative modeling.
- Score: 1.534667887016089
- License:
- Abstract: Simultaneously considering multiple objectives in machine learning has been a popular approach for several decades, with various benefits for multi-task learning, the consideration of secondary goals such as sparsity, or multicriteria hyperparameter tuning. However - as multi-objective optimization is significantly more costly than single-objective optimization - the recent focus on deep learning architectures poses considerable additional challenges due to the very large number of parameters, strong nonlinearities and stochasticity. This survey covers recent advancements in the area of multi-objective deep learning. We introduce a taxonomy of existing methods - based on the type of training algorithm as well as the decision maker's needs - before listing recent advancements, and also successful applications. All three main learning paradigms supervised learning, unsupervised learning and reinforcement learning are covered, and we also address the recently very popular area of generative modeling.
Related papers
- Gradient-Based Multi-Objective Deep Learning: Algorithms, Theories, Applications, and Beyond [35.78910104369677]
Multi-objective optimization (MOO) in deep learning aims to simultaneously optimize multiple conflicting objectives.
Advancements in gradient-based MOO methods have enabled the discovery of diverse types of solutions.
These developments have broad applications across domains such as reinforcement learning, computer vision, recommendation systems, and large language models.
arXiv Detail & Related papers (2025-01-19T04:56:55Z) - Accelerating Deep Learning with Fixed Time Budget [2.190627491782159]
This paper proposes an effective technique for training arbitrary deep learning models within fixed time constraints.
The proposed method is extensively evaluated in both classification and regression tasks in computer vision.
arXiv Detail & Related papers (2024-10-03T21:18:04Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Deep Long-Tailed Learning: A Survey [163.16874896812885]
Deep long-tailed learning aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution.
Long-tailed class imbalance is a common problem in practical visual recognition tasks.
This paper provides a comprehensive survey on recent advances in deep long-tailed learning.
arXiv Detail & Related papers (2021-10-09T15:25:22Z) - Meta Navigator: Search for a Good Adaptation Policy for Few-shot
Learning [113.05118113697111]
Few-shot learning aims to adapt knowledge learned from previous tasks to novel tasks with only a limited amount of labeled data.
Research literature on few-shot learning exhibits great diversity, while different algorithms often excel at different few-shot learning scenarios.
We present Meta Navigator, a framework that attempts to solve the limitation in few-shot learning by seeking a higher-level strategy.
arXiv Detail & Related papers (2021-09-13T07:20:01Z) - Recent Advances and Trends in Multimodal Deep Learning: A Review [9.11022096530605]
Multimodal deep learning aims to create models that can process and link information using various modalities.
This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals.
A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth.
arXiv Detail & Related papers (2021-05-24T04:20:45Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - Deep Model-Based Reinforcement Learning for High-Dimensional Problems, a
Survey [1.2031796234206134]
Model-based reinforcement learning creates an explicit model of the environment dynamics to reduce the need for environment samples.
A challenge for deep model-based methods is to achieve high predictive power while maintaining low sample complexity.
We propose a taxonomy based on three approaches: using explicit planning on given transitions, using explicit planning on learned transitions, and end-to-end learning of both planning and transitions.
arXiv Detail & Related papers (2020-08-11T08:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.