Headline-Guided Extractive Summarization for Thai News Articles
- URL: http://arxiv.org/abs/2412.01624v2
- Date: Mon, 10 Feb 2025 04:28:46 GMT
- Title: Headline-Guided Extractive Summarization for Thai News Articles
- Authors: Pimpitchaya Kositcharoensuk, Nakarin Sritrakool, Ploy N. Pratanwanich,
- Abstract summary: We propose CHIMA, an extractive summarization model that incorporates the contextual information of the headline for Thai news articles.
Our model utilizes a pre-trained language model to capture complex language semantics and assigns a probability to each sentence to be included in the summary.
Experiments on publicly available Thai news datasets demonstrate that CHIMA outperforms baseline models across ROUGE, BLEU, and F1 scores.
- Score: 0.0
- License:
- Abstract: Text summarization is a process of condensing lengthy texts while preserving their essential information. Previous studies have predominantly focused on high-resource languages, while low-resource languages like Thai have received less attention. Furthermore, earlier extractive summarization models for Thai texts have primarily relied on the article's body, without considering the headline. This omission can result in the exclusion of key sentences from the summary. To address these limitations, we propose CHIMA, an extractive summarization model that incorporates the contextual information of the headline for Thai news articles. Our model utilizes a pre-trained language model to capture complex language semantics and assigns a probability to each sentence to be included in the summary. By leveraging the headline to guide sentence selection, CHIMA enhances the model's ability to recover important sentences and discount irrelevant ones. Additionally, we introduce two strategies for aggregating headline-body similarities, simple average and harmonic mean, providing flexibility in sentence selection to accommodate varying writing styles. Experiments on publicly available Thai news datasets demonstrate that CHIMA outperforms baseline models across ROUGE, BLEU, and F1 scores. These results highlight the effectiveness of incorporating the headline-body similarities as model guidance. The results also indicate an enhancement in the model's ability to recall critical sentences, even those scattered throughout the middle or end of the article. With this potential, headline-guided extractive summarization offers a promising approach to improve the quality and relevance of summaries for Thai news articles.
Related papers
- P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models [57.571395694391654]
We find that existing approaches alter the political opinions and stances of news articles in more than 50% of summaries.
We propose P3SUM, a diffusion model-based summarization approach controlled by political perspective classifiers.
Experiments on three news summarization datasets demonstrate that P3SUM outperforms state-of-the-art summarization systems.
arXiv Detail & Related papers (2023-11-16T10:14:28Z) - GreekT5: A Series of Greek Sequence-to-Sequence Models for News
Summarization [0.0]
This paper proposes a series of novel TS models for Greek news articles.
The proposed models were thoroughly evaluated on the same dataset against GreekBART.
Our evaluation results reveal that most of the proposed models significantly outperform GreekBART on various evaluation metrics.
arXiv Detail & Related papers (2023-11-13T21:33:12Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets.
Despite promising results, current models still suffer from generating factually inconsistent summaries.
We leverage factual consistency evaluation models to improve multilingual summarization.
arXiv Detail & Related papers (2022-12-20T19:52:41Z) - Salience Allocation as Guidance for Abstractive Summarization [61.31826412150143]
We propose a novel summarization approach with a flexible and reliable salience guidance, namely SEASON (SaliencE Allocation as Guidance for Abstractive SummarizatiON)
SEASON utilizes the allocation of salience expectation to guide abstractive summarization and adapts well to articles in different abstractiveness.
arXiv Detail & Related papers (2022-10-22T02:13:44Z) - CNewSum: A Large-scale Chinese News Summarization Dataset with
Human-annotated Adequacy and Deducibility Level [15.969302324314516]
We present a large-scale Chinese news summarization dataset CNewSum.
It consists of 304,307 documents and human-written summaries for the news feed.
Its test set contains adequacy and deducibility annotations for the summaries.
arXiv Detail & Related papers (2021-10-21T03:37:46Z) - Fine-tuning GPT-3 for Russian Text Summarization [77.34726150561087]
This paper showcases ruGPT3 ability to summarize texts, fine-tuning it on the corpora of Russian news with their corresponding human-generated summaries.
We evaluate the resulting texts with a set of metrics, showing that our solution can surpass the state-of-the-art model's performance without additional changes in architecture or loss function.
arXiv Detail & Related papers (2021-08-07T19:01:40Z) - Bengali Abstractive News Summarization(BANS): A Neural Attention
Approach [0.8793721044482612]
We present a seq2seq based Long Short-Term Memory (LSTM) network model with attention at encoder-decoder.
Our proposed system deploys a local attention-based model that produces a long sequence of words with lucid and human-like generated sentences.
We also prepared a dataset of more than 19k articles and corresponding human-written summaries collected from bangla.bdnews24.com1.
arXiv Detail & Related papers (2020-12-03T08:17:31Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z) - A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with
Bilingual Semantic Similarity Rewards [40.17497211507507]
Cross-lingual text summarization is a practically important but under-explored task.
We propose an end-to-end cross-lingual text summarization model.
arXiv Detail & Related papers (2020-06-27T21:51:38Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.