Review of Mathematical Optimization in Federated Learning
- URL: http://arxiv.org/abs/2412.01630v1
- Date: Mon, 02 Dec 2024 15:45:46 GMT
- Title: Review of Mathematical Optimization in Federated Learning
- Authors: Shusen Yang, Fangyuan Zhao, Zihao Zhou, Liang Shi, Xuebin Ren, Zongben Xu,
- Abstract summary: Federated Learning (FL) has been becoming a popular interdisciplinary research area in both applied mathematics and information sciences.
FL aims to collaboratively optimize aggregate objective functions over distributed datasets while satisfying a variety of privacy and system constraints.
- Score: 25.925946727673214
- License:
- Abstract: Federated Learning (FL) has been becoming a popular interdisciplinary research area in both applied mathematics and information sciences. Mathematically, FL aims to collaboratively optimize aggregate objective functions over distributed datasets while satisfying a variety of privacy and system constraints.Different from conventional distributed optimization methods, FL needs to address several specific issues (e.g., non-i.i.d. data distributions and differential private noises), which pose a set of new challenges in the problem formulation, algorithm design, and convergence analysis. In this paper, we will systematically review existing FL optimization research including their assumptions, formulations, methods, and theoretical results. Potential future directions are also discussed.
Related papers
- Multi-Fidelity Methods for Optimization: A Survey [12.659229934111975]
Multi-fidelity optimization (MFO) balances high-fidelity accuracy with computational efficiency through a hierarchical fidelity approach.
We delve deep into the foundational principles and methodologies of MFO, focusing on three core components -- multi-fidelity surrogate models, fidelity management strategies, and optimization techniques.
This survey highlights the diverse applications of MFO across several key domains, including machine learning, engineering design optimization, and scientific discovery.
arXiv Detail & Related papers (2024-02-15T00:52:34Z) - UNIDEAL: Curriculum Knowledge Distillation Federated Learning [17.817181326740698]
Federated Learning (FL) has emerged as a promising approach to enable collaborative learning among multiple clients.
In this paper, we present UNI, a novel FL algorithm specifically designed to tackle the challenges of cross-domain scenarios.
Our results demonstrate that UNI achieves superior performance in terms of both model accuracy and communication efficiency.
arXiv Detail & Related papers (2023-09-16T11:30:29Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Federated Compositional Deep AUC Maximization [58.25078060952361]
We develop a novel federated learning method for imbalanced data by directly optimizing the area under curve (AUC) score.
To the best of our knowledge, this is the first work to achieve such favorable theoretical results.
arXiv Detail & Related papers (2023-04-20T05:49:41Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
This paper is the first to study PFL for saddle point problems encompassing a broader range of optimization problems.
We propose new algorithms to address this problem and provide a theoretical analysis of the smooth (strongly) convex-(strongly) concave saddle point problems.
Numerical experiments for bilinear problems and neural networks with adversarial noise demonstrate the effectiveness of the proposed methods.
arXiv Detail & Related papers (2021-06-14T10:36:25Z) - Hybrid Federated Learning: Algorithms and Implementation [61.0640216394349]
Federated learning (FL) is a recently proposed distributed machine learning paradigm dealing with distributed and private data sets.
We propose a new model-matching-based problem formulation for hybrid FL.
We then propose an efficient algorithm that can collaboratively train the global and local models to deal with full and partial featured data.
arXiv Detail & Related papers (2020-12-22T23:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.