V2XPnP: Vehicle-to-Everything Spatio-Temporal Fusion for Multi-Agent Perception and Prediction
- URL: http://arxiv.org/abs/2412.01812v1
- Date: Mon, 02 Dec 2024 18:55:34 GMT
- Title: V2XPnP: Vehicle-to-Everything Spatio-Temporal Fusion for Multi-Agent Perception and Prediction
- Authors: Zewei Zhou, Hao Xiang, Zhaoliang Zheng, Seth Z. Zhao, Mingyue Lei, Yun Zhang, Tianhui Cai, Xinyi Liu, Johnson Liu, Maheswari Bajji, Jacob Pham, Xin Xia, Zhiyu Huang, Bolei Zhou, Jiaqi Ma,
- Abstract summary: Vehicle-to-everything (V2X) technologies offer a promising paradigm to mitigate the limitations of constrained observability in single-vehicle systems.
Prior work primarily focuses on single-frame cooperative perception.
In this paper, we focus on temporal perception and prediction tasks in V2X scenarios and one-step and multi-temporal communication strategies.
- Score: 43.506717060709136
- License:
- Abstract: Vehicle-to-everything (V2X) technologies offer a promising paradigm to mitigate the limitations of constrained observability in single-vehicle systems. Prior work primarily focuses on single-frame cooperative perception, which fuses agents' information across different spatial locations but ignores temporal cues and temporal tasks (e.g., temporal perception and prediction). In this paper, we focus on temporal perception and prediction tasks in V2X scenarios and design one-step and multi-step communication strategies (when to transmit) as well as examine their integration with three fusion strategies - early, late, and intermediate (what to transmit), providing comprehensive benchmarks with various fusion models (how to fuse). Furthermore, we propose V2XPnP, a novel intermediate fusion framework within one-step communication for end-to-end perception and prediction. Our framework employs a unified Transformer-based architecture to effectively model complex spatiotemporal relationships across temporal per-frame, spatial per-agent, and high-definition map. Moreover, we introduce the V2XPnP Sequential Dataset that supports all V2X cooperation modes and addresses the limitations of existing real-world datasets, which are restricted to single-frame or single-mode cooperation. Extensive experiments demonstrate our framework outperforms state-of-the-art methods in both perception and prediction tasks.
Related papers
- Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network [25.524351892847257]
We propose a method called Graph Sparse Attention Mechanism with Bidirectional Temporal Convolutional Network (GSABT) for multimodal traffic spatial-temporal joint prediction.
We use a multimodal graph multiplied by self-attention weights to capture spatial local features, and then employ the Top-U sparse attention mechanism to obtain spatial global features.
We have designed a multimodal joint prediction framework that can be flexibly extended to both spatial and temporal dimensions.
arXiv Detail & Related papers (2024-12-24T12:57:52Z) - DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
We introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout.
DeepInteraction++ is a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder.
Experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks.
arXiv Detail & Related papers (2024-08-09T14:04:21Z) - Conformal Trajectory Prediction with Multi-View Data Integration in Cooperative Driving [4.628774934971078]
Current research on trajectory prediction primarily relies on data collected by onboard sensors of an ego vehicle.
We introduce V2INet, a novel trajectory prediction framework designed to model multi-view data by extending existing single-view models.
Our results demonstrate superior performance in terms of Final Displacement Error (FDE) and Miss Rate (MR) using a single GPU.
arXiv Detail & Related papers (2024-08-01T08:32:03Z) - AccidentBlip: Agent of Accident Warning based on MA-former [24.81148840857782]
AccidentBlip is a vision-only framework that employs our self-designed Motion Accident Transformer (MA-former) to process each frame of video.
AccidentBlip achieves performance in both accident detection and prediction tasks on the DeepAccident dataset.
It also outperforms current SOTA methods in V2V and V2X scenarios, demonstrating a superior capability to understand complex real-world environments.
arXiv Detail & Related papers (2024-04-18T12:54:25Z) - Practical Collaborative Perception: A Framework for Asynchronous and
Multi-Agent 3D Object Detection [9.967263440745432]
Occlusion is a major challenge for LiDAR-based object detection methods.
State-of-the-art V2X methods resolve the performance-bandwidth tradeoff using a mid-collaboration approach.
We devise a simple yet effective collaboration method that achieves a better bandwidth-performance tradeoff than prior methods.
arXiv Detail & Related papers (2023-07-04T03:49:42Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet) is a novel framework for video object segmentation (VOS)
Our FSNet performs the crossmodal feature-passing (i.e., transmission and receiving) simultaneously before fusion decoding stage.
We show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.
arXiv Detail & Related papers (2021-08-06T14:50:50Z) - End-to-end Contextual Perception and Prediction with Interaction
Transformer [79.14001602890417]
We tackle the problem of detecting objects in 3D and forecasting their future motion in the context of self-driving.
To capture their spatial-temporal dependencies, we propose a recurrent neural network with a novel Transformer architecture.
Our model can be trained end-to-end, and runs in real-time.
arXiv Detail & Related papers (2020-08-13T14:30:12Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.