Recurrent Neural Network on PICTURE Model
- URL: http://arxiv.org/abs/2412.01933v1
- Date: Mon, 02 Dec 2024 19:49:51 GMT
- Title: Recurrent Neural Network on PICTURE Model
- Authors: Weihan Xu,
- Abstract summary: The study aims to implement a deep learning model to benchmark the performance from the XGBoost model.
The model predicts patient deterioration by separating those at high risk for imminent intensive care unit transfer, respiratory failure, or death from those at lower risk.
- Score: 0.9790236766474201
- License:
- Abstract: Intensive Care Units (ICUs) provide critical care and life support for most severely ill and injured patients in the hospital. With the need for ICUs growing rapidly and unprecedentedly, especially during COVID-19, accurately identifying the most critical patients helps hospitals to allocate resources more efficiently and save more lives. The Predicting Intensive Care Transfers and Other Unforeseen Events (PICTURE) model predicts patient deterioration by separating those at high risk for imminent intensive care unit transfer, respiratory failure, or death from those at lower risk. This study aims to implement a deep learning model to benchmark the performance from the XGBoost model, an existing model which has competitive results on prediction.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
The Intensive Care Unit (ICU) is one of the most important parts of a hospital, which admits critically ill patients and provides continuous monitoring and treatment.
Various patient outcome prediction methods have been attempted to assist healthcare professionals in clinical decision-making.
arXiv Detail & Related papers (2023-08-24T05:26:56Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
We evaluate the performance of transformer-based models in predicting postoperative acute renal failure, pulmonary complications, and postoperative in-hospital mortality.
Our results demonstrate that transformer-based models can achieve superior performance in predicting postoperative complications and outperform traditional machine learning models.
arXiv Detail & Related papers (2023-06-01T14:08:05Z) - Early prediction of the risk of ICU mortality with Deep Federated
Learning [0.0]
We evaluate the ability of deep Federated Learning to predict the risk of Intensive Care Unit mortality at an early stage.
We show that the prediction performance is higher when the patient history window is closer to discharge or death.
arXiv Detail & Related papers (2022-12-01T15:01:27Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Early ICU Mortality Prediction and Survival Analysis for Respiratory
Failure [4.229085609275446]
We propose a dynamic modeling approach for early mortality risk prediction of the respiratory failure patients based on the first 24 hours ICU physiological data.
We achieved a high AUROC performance (80-83%) and significantly improved AUCPR 4% on Day 5 since ICU admission, compared to the state-of-art prediction models.
arXiv Detail & Related papers (2021-09-06T06:03:23Z) - Building Deep Learning Models to Predict Mortality in ICU Patients [0.0]
We propose several deep learning models using the same features as the SAPS II score.
Several experiments have been conducted based on the well known clinical dataset Medical Information Mart for Intensive Care III.
arXiv Detail & Related papers (2020-12-11T16:27:04Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.