Machine Learning Methods for Automated Interstellar Object Classification with LSST
- URL: http://arxiv.org/abs/2412.02112v1
- Date: Tue, 03 Dec 2024 03:09:22 GMT
- Title: Machine Learning Methods for Automated Interstellar Object Classification with LSST
- Authors: Richard Cloete, Peter Vereš, Abraham Loeb,
- Abstract summary: Legacy Survey of Space and Time is poised to revolutionize our understanding of the Solar System.
This study explores the application of machine learning algorithms to the automated classification of ISO tracklets.
We employ various machine learning algorithms, including random forests (RFs), shape in gradient descent (SGD), and neural networks (NNs)
We demonstrate that GBM and RF algorithms outperform SGD and NN algorithms in accurately distinguishing ISOs from other Solar System objects.
- Score: 0.196629787330046
- License:
- Abstract: The Legacy Survey of Space and Time, to be conducted with the Vera C. Rubin Observatory, is poised to revolutionize our understanding of the Solar System by providing an unprecedented wealth of data on various objects, including the elusive interstellar objects (ISOs). Detecting and classifying ISOs is crucial for studying the composition and diversity of materials from other planetary systems. However, the rarity and brief observation windows of ISOs, coupled with the vast quantities of data to be generated by LSST, create significant challenges for their identification and classification. This study aims to address these challenges by exploring the application of machine learning algorithms to the automated classification of ISO tracklets in simulated LSST data. We employed various machine learning algorithms, including random forests (RFs), stochastic gradient descent (SGD), gradient boosting machines (GBMs), and neural networks (NNs), to classify ISO tracklets in simulated LSST data. We demonstrate that GBM and RF algorithms outperform SGD and NN algorithms in accurately distinguishing ISOs from other Solar System objects. RF analysis shows that many derived Digest2 values are more important than direct observables in classifying ISOs from the LSST tracklets. The GBM model achieves the highest precision, recall, and F1 score, with values of 0.9987, 0.9986, and 0.9987, respectively. These findings lay the foundation for the development of an efficient and robust automated system for ISO discovery using LSST data, paving the way for a deeper understanding of the materials and processes that shape planetary systems beyond our own. The integration of our proposed machine learning approach into the LSST data processing pipeline will optimize the survey's potential for identifying these rare and valuable objects, enabling timely follow-up observations and further characterization.
Related papers
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.
Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.
We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Automating the Discovery of Partial Differential Equations in Dynamical Systems [0.0]
We present an extension to the ARGOS framework, ARGOS-RAL, which leverages sparse regression with the recurrent adaptive lasso to identify PDEs automatically.
We rigorously evaluate the performance of ARGOS-RAL in identifying canonical PDEs under various noise levels and sample sizes.
Our results show that ARGOS-RAL effectively and reliably identifies the underlying PDEs from data, outperforming the sequential threshold ridge regression method in most cases.
arXiv Detail & Related papers (2024-04-25T09:23:03Z) - Skip the Benchmark: Generating System-Level High-Level Synthesis Data using Generative Machine Learning [8.416553728391309]
High-Level Synthesis (HLS) Design Space Exploration (DSE) is a widely accepted approach for exploring optimal hardware solutions during the HLS process.
Several HLS benchmarks and datasets are available for the research community to evaluate their methodologies.
This paper proposes a novel approach, called Vaegan, that employs generative machine learning to generate synthetic data that is robust enough to support complex system-level HLS DSE experiments.
arXiv Detail & Related papers (2024-04-23T05:32:22Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Closely-Spaced Object Classification Using MuyGPyS [0.6144680854063939]
We present a novel method for detecting closely-spaced objects (CSO) in optical space domain awareness (SDA) algorithms.
We use the Gaussian process python package, MuyGPyS, and examine classification accuracy as a function of angular separation and magnitude difference between simulated satellites.
We find that MuyGPyS outperforms traditional machine learning methods, especially under more challenging circumstances.
arXiv Detail & Related papers (2023-11-17T22:52:46Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Automated classification of pre-defined movement patterns: A comparison
between GNSS and UWB technology [55.41644538483948]
Real-time location systems (RTLS) allow for collecting data from human movement patterns.
The current study aims to design and evaluate an automated framework to classify human movement patterns in small areas.
arXiv Detail & Related papers (2023-03-10T14:46:42Z) - Dominant motion identification of multi-particle system using deep
learning from video [0.0]
In this work, we provide a deep-learning framework that extracts relevant information from real-world videos of highly systems.
We demonstrate this approach on videos of confined multi-agent/particle systems of ants, termites, fishes.
Furthermore, we explore how these seemingly diverse systems have predictable underlying behavior.
arXiv Detail & Related papers (2021-04-26T17:10:56Z) - Automated identification of transiting exoplanet candidates in NASA
Transiting Exoplanets Survey Satellite (TESS) data with machine learning
methods [1.9491825010518622]
The AI/ML ThetaRay system is trained initially with Kepler exoplanetary data and validated with confirmed exoplanets.
By the application of ThetaRay to 10,803 light curves of threshold crossing events (TCEs) produced by the TESS mission, we uncover 39 new exoplanetary candidates.
arXiv Detail & Related papers (2021-02-20T12:28:39Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.