Leveraging Large Language Models for Comparative Literature Summarization with Reflective Incremental Mechanisms
- URL: http://arxiv.org/abs/2412.02149v1
- Date: Tue, 03 Dec 2024 04:09:36 GMT
- Title: Leveraging Large Language Models for Comparative Literature Summarization with Reflective Incremental Mechanisms
- Authors: Fernando Gabriela Garcia, Spencer Burns, Harrison Fuller,
- Abstract summary: ChatCite is a novel method leveraging large language models (LLMs) for generating comparative literature summaries.
We evaluate ChatCite on a custom dataset, CompLit-LongContext, consisting of 1000 research papers with annotated comparative summaries.
- Score: 44.99833362998488
- License:
- Abstract: In this paper, we introduce ChatCite, a novel method leveraging large language models (LLMs) for generating comparative literature summaries. The ability to summarize research papers with a focus on key comparisons between studies is an essential task in academic research. Existing summarization models, while effective at generating concise summaries, fail to provide deep comparative insights. ChatCite addresses this limitation by incorporating a multi-step reasoning mechanism that extracts critical elements from papers, incrementally builds a comparative summary, and refines the output through a reflective memory process. We evaluate ChatCite on a custom dataset, CompLit-LongContext, consisting of 1000 research papers with annotated comparative summaries. Experimental results show that ChatCite outperforms several baseline methods, including GPT-4, BART, T5, and CoT, across various automatic evaluation metrics such as ROUGE and the newly proposed G-Score. Human evaluation further confirms that ChatCite generates more coherent, insightful, and fluent summaries compared to these baseline models. Our method provides a significant advancement in automatic literature review generation, offering researchers a powerful tool for efficiently comparing and synthesizing scientific research.
Related papers
- A Comparative Study of Quality Evaluation Methods for Text Summarization [0.5512295869673147]
This paper proposes a novel method based on large language models (LLMs) for evaluating text summarization.
Our results show that LLMs evaluation aligns closely with human evaluation, while widely-used automatic metrics such as ROUGE-2, BERTScore, and SummaC do not and also lack consistency.
arXiv Detail & Related papers (2024-06-30T16:12:37Z) - Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
We present a novel framework to distill a powerful summarizer based on the information-theoretic objective for summarization.
We start off from Pythia-2.8B as the teacher model, which is not yet capable of summarization.
We arrive at a compact but powerful summarizer with only 568M parameters that performs competitively against ChatGPT.
arXiv Detail & Related papers (2024-03-20T17:42:08Z) - ChatCite: LLM Agent with Human Workflow Guidance for Comparative
Literature Summary [30.409552944905915]
ChatCite is an LLM agent with human workflow guidance for comparative literature summary.
The ChatCite agent outperformed other models in various dimensions in the experiments.
The literature summaries generated by ChatCite can also be directly used for drafting literature reviews.
arXiv Detail & Related papers (2024-03-05T01:13:56Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
In this paper, we study the efficacy of large language models as multi-dimensional evaluators using in-context learning.
Our experiments show that in-context learning-based evaluators are competitive with learned evaluation frameworks for the task of text summarization.
We then analyze the effects of factors such as the selection and number of in-context examples on performance.
arXiv Detail & Related papers (2023-06-01T23:27:49Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
A document summary's quality can be assessed by human annotators on various criteria, both objective ones like grammar and correctness, and subjective ones like informativeness, succinctness, and appeal.
Most of the automatic evaluation methods like BLUE/ROUGE may be not able to adequately capture the above dimensions.
We propose a new evaluation framework based on LLMs, which provides a comprehensive evaluation framework by comparing generated text and reference text from both objective and subjective aspects.
arXiv Detail & Related papers (2023-03-27T10:40:59Z) - Exploring the Limits of ChatGPT for Query or Aspect-based Text
Summarization [28.104696513516117]
Large language models (LLMs) like GPT3 and ChatGPT have recently created significant interest in using these models for text summarization tasks.
Recent studies citegoyal2022news, zhang2023benchmarking have shown that LLMs-generated news summaries are already on par with humans.
Our experiments reveal that ChatGPT's performance is comparable to traditional fine-tuning methods in terms of Rouge scores.
arXiv Detail & Related papers (2023-02-16T04:41:30Z) - Comparing Methods for Extractive Summarization of Call Centre Dialogue [77.34726150561087]
We experimentally compare several such methods by using them to produce summaries of calls, and evaluating these summaries objectively.
We found that TopicSum and Lead-N outperform the other summarisation methods, whilst BERTSum received comparatively lower scores in both subjective and objective evaluations.
arXiv Detail & Related papers (2022-09-06T13:16:02Z) - A Data-driven Latent Semantic Analysis for Automatic Text Summarization
using LDA Topic Modelling [0.0]
This study presents the Latent Dirichlet Allocation (LDA) approach used to perform topic modelling.
The visualisation provides an overarching view of the main topics while allowing and attributing deep meaning to the prevalence individual topic.
The results suggest the terms ranked purely by considering their probability of the topic prevalence within the processed document.
arXiv Detail & Related papers (2022-07-23T11:04:03Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
We crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads.
We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data.
arXiv Detail & Related papers (2021-06-01T22:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.