Single-Shot Metric Depth from Focused Plenoptic Cameras
- URL: http://arxiv.org/abs/2412.02386v1
- Date: Tue, 03 Dec 2024 11:21:17 GMT
- Title: Single-Shot Metric Depth from Focused Plenoptic Cameras
- Authors: Blanca Lasheras-Hernandez, Klaus H. Strobl, Sergio Izquierdo, Tim Bodenmüller, Rudolph Triebel, Javier Civera,
- Abstract summary: Metric depth estimation from visual sensors is crucial for robots to perceive, navigate, and interact with their environment.
Light field imaging provides a promising solution for estimating metric depth by using a unique lens configuration through a single device.
Our work explores the potential of focused plenoptic cameras for dense metric depth.
- Score: 18.412662939667676
- License:
- Abstract: Metric depth estimation from visual sensors is crucial for robots to perceive, navigate, and interact with their environment. Traditional range imaging setups, such as stereo or structured light cameras, face hassles including calibration, occlusions, and hardware demands, with accuracy limited by the baseline between cameras. Single- and multi-view monocular depth offers a more compact alternative, but is constrained by the unobservability of the metric scale. Light field imaging provides a promising solution for estimating metric depth by using a unique lens configuration through a single device. However, its application to single-view dense metric depth is under-addressed mainly due to the technology's high cost, the lack of public benchmarks, and proprietary geometrical models and software. Our work explores the potential of focused plenoptic cameras for dense metric depth. We propose a novel pipeline that predicts metric depth from a single plenoptic camera shot by first generating a sparse metric point cloud using machine learning, which is then used to scale and align a dense relative depth map regressed by a foundation depth model, resulting in dense metric depth. To validate it, we curated the Light Field & Stereo Image Dataset (LFS) of real-world light field images with stereo depth labels, filling a current gap in existing resources. Experimental results show that our pipeline produces accurate metric depth predictions, laying a solid groundwork for future research in this field.
Related papers
- GVDepth: Zero-Shot Monocular Depth Estimation for Ground Vehicles based on Probabilistic Cue Fusion [7.588468985212172]
Generalizing metric monocular depth estimation presents a significant challenge due to its ill-posed nature.
We propose a novel canonical representation that maintains consistency across varied camera setups.
We also propose a novel architecture that adaptively and probabilistically fuses depths estimated via object size and vertical image position cues.
arXiv Detail & Related papers (2024-12-08T22:04:34Z) - Depth Pro: Sharp Monocular Metric Depth in Less Than a Second [45.6690958201871]
We present a foundation model for zero-shot metric monocular depth estimation.
Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details.
It produces a 2.25-megapixel depth map in 0.3 seconds on a standard GPU.
arXiv Detail & Related papers (2024-10-02T22:42:20Z) - ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
We propose a novel monocular depth estimation method called ScaleDepth.
Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction module.
Our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework.
arXiv Detail & Related papers (2024-07-11T05:11:56Z) - Metric3Dv2: A Versatile Monocular Geometric Foundation Model for Zero-shot Metric Depth and Surface Normal Estimation [74.28509379811084]
Metric3D v2 is a geometric foundation model for zero-shot metric depth and surface normal estimation from a single image.
We propose solutions for both metric depth estimation and surface normal estimation.
Our method enables the accurate recovery of metric 3D structures on randomly collected internet images.
arXiv Detail & Related papers (2024-03-22T02:30:46Z) - GEDepth: Ground Embedding for Monocular Depth Estimation [4.95394574147086]
This paper proposes a novel ground embedding module to decouple camera parameters from pictorial cues.
A ground attention is designed in the module to optimally combine ground depth with residual depth.
Experiments reveal that our approach achieves the state-of-the-art results on popular benchmarks.
arXiv Detail & Related papers (2023-09-18T17:56:06Z) - Blur aware metric depth estimation with multi-focus plenoptic cameras [8.508198765617196]
We present a new metric depth estimation algorithm using only raw images from a multi-focus plenoptic camera.
The proposed approach is especially suited for the multi-focus configuration where several micro-lenses with different focal lengths are used.
arXiv Detail & Related papers (2023-08-08T13:38:50Z) - Uncertainty Guided Depth Fusion for Spike Camera [49.41822923588663]
We propose a novel Uncertainty-Guided Depth Fusion (UGDF) framework to fuse predictions of monocular and stereo depth estimation networks for spike camera.
Our framework is motivated by the fact that stereo spike depth estimation achieves better results at close range.
In order to demonstrate the advantage of spike depth estimation over traditional camera depth estimation, we contribute a spike-depth dataset named CitySpike20K.
arXiv Detail & Related papers (2022-08-26T13:04:01Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
We propose a SurroundDepth method to incorporate the information from multiple surrounding views to predict depth maps across cameras.
Specifically, we employ a joint network to process all the surrounding views and propose a cross-view transformer to effectively fuse the information from multiple views.
In experiments, our method achieves the state-of-the-art performance on the challenging multi-camera depth estimation datasets.
arXiv Detail & Related papers (2022-04-07T17:58:47Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Baseline and Triangulation Geometry in a Standard Plenoptic Camera [6.719751155411075]
We present a geometrical light field model allowing triangulation to be applied to a plenoptic camera.
It is shown that distance estimates from our novel method match those of real objects placed in front of the camera.
arXiv Detail & Related papers (2020-10-09T15:31:14Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.