Knowledge-Enhanced Conversational Recommendation via Transformer-based Sequential Modelling
- URL: http://arxiv.org/abs/2412.02415v1
- Date: Tue, 03 Dec 2024 12:20:56 GMT
- Title: Knowledge-Enhanced Conversational Recommendation via Transformer-based Sequential Modelling
- Authors: Jie Zou, Aixin Sun, Cheng Long, Evangelos Kanoulas,
- Abstract summary: We first propose a Transformer-based sequential conversational recommendation method, named TSCR, to model the sequential dependencies in the conversations.
We then propose a knowledge graph enhanced version of TSCR, called TSCRKG.
Experimental results demonstrate that our TSCR model significantly outperforms state-of-the-art baselines.
- Score: 58.681146735761224
- License:
- Abstract: In conversational recommender systems (CRSs), conversations usually involve a set of items and item-related entities or attributes, e.g., director is a related entity of a movie. These items and item-related entities are often mentioned along the development of a dialog, leading to potential sequential dependencies among them. However, most of existing CRSs neglect these potential sequential dependencies. In this article, we first propose a Transformer-based sequential conversational recommendation method, named TSCR, to model the sequential dependencies in the conversations to improve CRS. In TSCR, we represent conversations by items and the item-related entities, and construct user sequences to discover user preferences by considering both the mentioned items and item-related entities. Based on the constructed sequences, we deploy a Cloze task to predict the recommended items along a sequence. Meanwhile, in certain domains, knowledge graphs formed by the items and their related entities are readily available, which provide various different kinds of associations among them. Given that TSCR does not benefit from such knowledge graphs, we then propose a knowledge graph enhanced version of TSCR, called TSCRKG. In specific, we leverage the knowledge graph to offline initialize our model TSCRKG, and augment the user sequence of conversations (i.e., sequence of the mentioned items and item-related entities in the conversation) with multi-hop paths in the knowledge graph. Experimental results demonstrate that our TSCR model significantly outperforms state-of-the-art baselines, and the enhanced version TSCRKG further improves recommendation performance on top of TSCR.
Related papers
- Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - Conversational Recommendation as Retrieval: A Simple, Strong Baseline [4.737923227003888]
Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation.
Most CRS approaches do not effectively utilize the signal provided by these conversations.
We propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task.
arXiv Detail & Related papers (2023-05-23T06:21:31Z) - Recommender Systems with Generative Retrieval [58.454606442670034]
We propose a novel generative retrieval approach, where the retrieval model autoregressively decodes the identifiers of the target candidates.
To that end, we create semantically meaningful of codewords to serve as a Semantic ID for each item.
We show that recommender systems trained with the proposed paradigm significantly outperform the current SOTA models on various datasets.
arXiv Detail & Related papers (2023-05-08T21:48:17Z) - Improving Items and Contexts Understanding with Descriptive Graph for
Conversational Recommendation [4.640835690336652]
State-of-the-art methods on conversational recommender systems (CRS) leverage external knowledge to enhance both items' and contextual words' representations.
We propose a new CRS framework KLEVER, which jointly models items and their associated contextual words in the same semantic space.
Experiments on benchmarking CRS dataset demonstrate that KLEVER achieves superior performance, especially when the information from the users' responses is lacking.
arXiv Detail & Related papers (2023-04-11T21:21:46Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - Sequential Recommendation with Auxiliary Item Relationships via
Multi-Relational Transformer [74.64431400185106]
We propose a Multi-relational Transformer capable of modeling auxiliary item relationships for Sequential Recommendation (SR)
Specifically, we propose a novel self-attention module, which incorporates arbitrary item relationships and weights item relationships accordingly.
Third, for inter-sequence item relationship pairs, we introduce a novel inter-sequence related items modeling module.
arXiv Detail & Related papers (2022-10-24T19:49:17Z) - CR-Walker: Tree-Structured Graph Reasoning and Dialog Acts for
Conversational Recommendation [62.13413129518165]
CR-Walker is a model that performs tree-structured reasoning on a knowledge graph.
It generates informative dialog acts to guide language generation.
Automatic and human evaluations show that CR-Walker can arrive at more accurate recommendation.
arXiv Detail & Related papers (2020-10-20T14:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.