Defending Against Diverse Attacks in Federated Learning Through Consensus-Based Bi-Level Optimization
- URL: http://arxiv.org/abs/2412.02535v1
- Date: Tue, 03 Dec 2024 16:26:56 GMT
- Title: Defending Against Diverse Attacks in Federated Learning Through Consensus-Based Bi-Level Optimization
- Authors: Nicolás García Trillos, Aditya Kumar Akash, Sixu Li, Konstantin Riedl, Yuhua Zhu,
- Abstract summary: Adversarial attacks pose significant challenges in many machine learning applications.
We conduct a theoretical analysis of the resilience of consensus-based bi-level optimization (CB$2$O) in adversarial settings.
We propose FedCB$2$O, a novel interacting multi-particle system, and design a practical algorithm that addresses the demands of real-world applications.
- Score: 6.484902940268382
- License:
- Abstract: Adversarial attacks pose significant challenges in many machine learning applications, particularly in the setting of distributed training and federated learning, where malicious agents seek to corrupt the training process with the goal of jeopardizing and compromising the performance and reliability of the final models. In this paper, we address the problem of robust federated learning in the presence of such attacks by formulating the training task as a bi-level optimization problem. We conduct a theoretical analysis of the resilience of consensus-based bi-level optimization (CB$^2$O), an interacting multi-particle metaheuristic optimization method, in adversarial settings. Specifically, we provide a global convergence analysis of CB$^2$O in mean-field law in the presence of malicious agents, demonstrating the robustness of CB$^2$O against a diverse range of attacks. Thereby, we offer insights into how specific hyperparameter choices enable to mitigate adversarial effects. On the practical side, we extend CB$^2$O to the clustered federated learning setting by proposing FedCB$^2$O, a novel interacting multi-particle system, and design a practical algorithm that addresses the demands of real-world applications. Extensive experiments demonstrate the robustness of the FedCB$^2$O algorithm against label-flipping attacks in decentralized clustered federated learning scenarios, showcasing its effectiveness in practical contexts.
Related papers
- Adversarial Robustness in Two-Stage Learning-to-Defer: Algorithms and Guarantees [3.6787328174619254]
Learning-to-Defer (L2D) facilitates optimal task allocation between AI systems and decision-makers.
This paper conducts the first comprehensive analysis of adversarial robustness in two-stage L2D frameworks.
We propose SARD, a robust, convex, deferral algorithm rooted in Bayes and $(mathcalR,mathcalG)$-consistency.
arXiv Detail & Related papers (2025-02-03T03:44:35Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
We create high-quality adversarial examples by incorporating multi-granular perturbations.
We transform the multi-granular attack into a sequential decision-making process.
Our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
arXiv Detail & Related papers (2024-04-02T02:08:29Z) - Discriminative Adversarial Unlearning [40.30974185546541]
We introduce a novel machine unlearning framework founded upon the established principles of the min-max optimization paradigm.
We capitalize on the capabilities of strong Membership Inference Attacks (MIA) to facilitate the unlearning of specific samples from a trained model.
Our proposed algorithm closely approximates the ideal benchmark of retraining from scratch for both random sample forgetting and class-wise forgetting schemes.
arXiv Detail & Related papers (2024-02-10T03:04:57Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Delving into the Adversarial Robustness of Federated Learning [41.409961662754405]
In Federated Learning (FL), models are as fragile as centrally trained models against adversarial examples.
We propose a novel algorithm called Decision Boundary based Federated Adversarial Training (DBFAT) to improve both accuracy and robustness of FL systems.
arXiv Detail & Related papers (2023-02-19T04:54:25Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
The Internet of Things (IoT) faces tremendous security challenges.
The increasing threat posed by adversarial attacks restates the need for reliable defense strategies.
This work describes the types of constraints required for an adversarial cyber-attack example to be realistic.
arXiv Detail & Related papers (2023-01-30T18:00:28Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
Adversarial training is one of the most effective defenses against adversarial attacks for deep learning models.
In this work, we advocate incorporating the hypersphere embedding mechanism into the AT procedure.
We validate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-20T08:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.