Explainable CTR Prediction via LLM Reasoning
- URL: http://arxiv.org/abs/2412.02588v1
- Date: Tue, 03 Dec 2024 17:17:27 GMT
- Title: Explainable CTR Prediction via LLM Reasoning
- Authors: Xiaohan Yu, Li Zhang, Chong Chen,
- Abstract summary: We present ExpCTR, a novel framework that integrates large language model based explanation generation directly into the CTR prediction process.<n>We show that ExpCTR significantly enhances both recommendation accuracy and interpretability across three real-world datasets.
- Score: 6.836445921587037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation Systems have become integral to modern user experiences, but lack transparency in their decision-making processes. Existing explainable recommendation methods are hindered by reliance on a post-hoc paradigm, wherein explanation generators are trained independently of the underlying recommender models. This paradigm necessitates substantial human effort in data construction and raises concerns about explanation reliability. In this paper, we present ExpCTR, a novel framework that integrates large language model based explanation generation directly into the CTR prediction process. Inspired by recent advances in reinforcement learning, we employ two carefully designed reward mechanisms, LC alignment, which ensures explanations reflect user intentions, and IC alignment, which maintains consistency with traditional ID-based CTR models. Our approach incorporates an efficient training paradigm with LoRA and a three-stage iterative process. ExpCTR circumvents the need for extensive explanation datasets while fostering synergy between CTR prediction and explanation generation. Experimental results demonstrate that ExpCTR significantly enhances both recommendation accuracy and interpretability across three real-world datasets.
Related papers
- Balancing Efficiency and Effectiveness: An LLM-Infused Approach for Optimized CTR Prediction [19.657522015829922]
We introduce a novel approach that models deep semantic information end-to-end.
Our framework is carefully designed to balance efficiency and effectiveness.
Online A/B tests conducted on the Meituan sponsored-search system demonstrate that our method significantly outperforms baseline models in terms of Cost Per Mile (CPM) and Click Through Rate (CTR)
arXiv Detail & Related papers (2024-12-09T02:36:38Z) - Interpret the Internal States of Recommendation Model with Sparse Autoencoder [26.021277330699963]
RecSAE is an automatic, generalizable probing method for interpreting the internal states of Recommendation models.
We train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models.
We automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences.
arXiv Detail & Related papers (2024-11-09T08:22:31Z) - Dual Conditional Diffusion Models for Sequential Recommendation [63.82152785755723]
We propose Dual Conditional Diffusion Models for Sequential Recommendation (DCRec)
DCRec integrates implicit and explicit information by embedding dual conditions into both the forward and reverse diffusion processes.
This allows the model to retain valuable sequential and contextual information while leveraging explicit user-item interactions to guide the recommendation process.
arXiv Detail & Related papers (2024-10-29T11:51:06Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness.
We show that training VLM on short answers does not generalize well to reasoning tasks that require more detailed responses.
arXiv Detail & Related papers (2024-10-21T17:00:06Z) - Enhancing CTR Prediction through Sequential Recommendation Pre-training: Introducing the SRP4CTR Framework [13.574487867743773]
We propose a Sequential Recommendation Pre-training framework for Click-Through Rate (CTR) prediction (SRP4CTR)
We discuss the impact of introducing pre-trained models on inference costs. Subsequently, we introduce a pre-trained method to encode sequence side information concurrently.
We develop a querying transformer technique to facilitate the knowledge transfer from the pre-trained model to industrial CTR models.
arXiv Detail & Related papers (2024-07-29T02:49:11Z) - Retrieval-Oriented Knowledge for Click-Through Rate Prediction [29.55757862617378]
Click-through rate (CTR) prediction is crucial for personalized online services.
underlineretrieval-underlineoriented underlineknowledge (bfname) framework bypasses the real retrieval process.
name features a knowledge base that preserves and imitates the retrieved & aggregated representations.
arXiv Detail & Related papers (2024-04-28T20:21:03Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
Click-Through Rate (CTR) prediction is a pivotal task in product and content recommendation.
We propose a model that enables Dynamic Embedding Learning with Truncated Conscious Attention for CTR prediction.
arXiv Detail & Related papers (2023-05-03T12:34:45Z) - Paired Examples as Indirect Supervision in Latent Decision Models [109.76417071249945]
We introduce a way to leverage paired examples that provide stronger cues for learning latent decisions.
We apply our method to improve compositional question answering using neural module networks on the DROP dataset.
arXiv Detail & Related papers (2021-04-05T03:58:30Z) - Iterative Boosting Deep Neural Networks for Predicting Click-Through
Rate [15.90144113403866]
The click-through rate (CTR) reflects the ratio of clicks on a specific item to its total number of views.
XdBoost is an iterative three-stage neural network model influenced by the traditional machine learning boosting mechanism.
arXiv Detail & Related papers (2020-07-26T09:41:16Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.