CAISSON: Concept-Augmented Inference Suite of Self-Organizing Neural Networks
- URL: http://arxiv.org/abs/2412.02835v1
- Date: Tue, 03 Dec 2024 21:00:10 GMT
- Title: CAISSON: Concept-Augmented Inference Suite of Self-Organizing Neural Networks
- Authors: Igor Halperin,
- Abstract summary: We present CAISSON, a novel hierarchical approach to Retrieval-Augmented Generation (RAG)
At its core, CAISSON leverages dual Self-Organizing Maps (SOMs) to create complementary organizational views of the document space.
To evaluate CAISSON, we develop SynFAQA, a framework for generating synthetic financial analyst notes and question-answer pairs.
- Score: 0.0
- License:
- Abstract: We present CAISSON, a novel hierarchical approach to Retrieval-Augmented Generation (RAG) that transforms traditional single-vector search into a multi-view clustering framework. At its core, CAISSON leverages dual Self-Organizing Maps (SOMs) to create complementary organizational views of the document space, where each view captures different aspects of document relationships through specialized embeddings. The first view processes combined text and metadata embeddings, while the second operates on metadata enriched with concept embeddings, enabling a comprehensive multi-view analysis that captures both fine-grained semantic relationships and high-level conceptual patterns. This dual-view approach enables more nuanced document discovery by combining evidence from different organizational perspectives. To evaluate CAISSON, we develop SynFAQA, a framework for generating synthetic financial analyst notes and question-answer pairs that systematically tests different aspects of information retrieval capabilities. Drawing on HotPotQA's methodology for constructing multi-step reasoning questions, SynFAQA generates controlled test cases where each question is paired with the set of notes containing its ground-truth answer, progressing from simple single-entity queries to complex multi-hop retrieval tasks involving multiple entities and concepts. Our experimental results demonstrate substantial improvements over both basic and enhanced RAG implementations, particularly for complex multi-entity queries, while maintaining practical response times suitable for interactive applications.
Related papers
- VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings.
We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG.
arXiv Detail & Related papers (2024-12-14T06:24:55Z) - Leveraging Inter-Chunk Interactions for Enhanced Retrieval in Large Language Model-Based Question Answering [12.60063463163226]
IIER captures the internal connections between document chunks by considering three types of interactions: structural, keyword, and semantic.
It identifies multiple seed nodes based on the target question and iteratively searches for relevant chunks to gather supporting evidence.
It refines the context and reasoning chain, aiding the large language model in reasoning and answer generation.
arXiv Detail & Related papers (2024-08-06T02:39:55Z) - Multi-Grained Query-Guided Set Prediction Network for Grounded Multimodal Named Entity Recognition [9.506482334842293]
Grounded Multimodal Named Entity Recognition (GMNER) is an emerging information extraction (IE) task.
Recent unified methods employing machine reading comprehension or sequence generation-based frameworks show limitations in this difficult task.
We propose a novel unified framework named Multi-grained Query-guided Set Prediction Network (MQSPN) to learn appropriate relationships at intra-entity and inter-entity levels.
arXiv Detail & Related papers (2024-07-17T05:42:43Z) - M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot
Fine-grained Action Recognition [80.21796574234287]
M$3$Net is a matching-based framework for few-shot fine-grained (FS-FG) action recognition.
It incorporates textitmulti-view encoding, textitmulti-view matching, and textitmulti-view fusion to facilitate embedding encoding, similarity matching, and decision making.
Explainable visualizations and experimental results demonstrate the superiority of M$3$Net in capturing fine-grained action details.
arXiv Detail & Related papers (2023-08-06T09:15:14Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - CoADNet: Collaborative Aggregation-and-Distribution Networks for
Co-Salient Object Detection [91.91911418421086]
Co-Salient Object Detection (CoSOD) aims at discovering salient objects that repeatedly appear in a given query group containing two or more relevant images.
One challenging issue is how to effectively capture co-saliency cues by modeling and exploiting inter-image relationships.
We present an end-to-end collaborative aggregation-and-distribution network (CoADNet) to capture both salient and repetitive visual patterns from multiple images.
arXiv Detail & Related papers (2020-11-10T04:28:11Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.