CLAS: A Machine Learning Enhanced Framework for Exploring Large 3D Design Datasets
- URL: http://arxiv.org/abs/2412.02996v1
- Date: Wed, 04 Dec 2024 03:29:56 GMT
- Title: CLAS: A Machine Learning Enhanced Framework for Exploring Large 3D Design Datasets
- Authors: XiuYu Zhang, Xiaolei Ye, Jui-Che Chang, Yue Fang,
- Abstract summary: We propose a machine learning (ML) enhanced framework CLAS to enable fully automatic retrieval of 3D objects.
As a proof of concept, we created and showcased a search system with a web user interface (UI) for retrieving 6,778 3D objects of chairs.
In a close-set retrieval setting, our retrieval method achieves a mean reciprocal rank (MRR) of 0.58, top 1 accuracy of 42.27%, and top 10 accuracy of 89.64%.
- Score: 1.281023989926633
- License:
- Abstract: Three-dimensional (3D) objects have wide applications. Despite the growing interest in 3D modeling in academia and industries, designing and/or creating 3D objects from scratch remains time-consuming and challenging. With the development of generative artificial intelligence (AI), designers discover a new way to create images for ideation. However, generative AIs are less useful in creating 3D objects with satisfying qualities. To allow 3D designers to access a wide range of 3D objects for creative activities based on their specific demands, we propose a machine learning (ML) enhanced framework CLAS - named after the four-step of capture, label, associate, and search - to enable fully automatic retrieval of 3D objects based on user specifications leveraging the existing datasets of 3D objects. CLAS provides an effective and efficient method for any person or organization to benefit from their existing but not utilized 3D datasets. In addition, CLAS may also be used to produce high-quality 3D object synthesis datasets for training and evaluating 3D generative models. As a proof of concept, we created and showcased a search system with a web user interface (UI) for retrieving 6,778 3D objects of chairs in the ShapeNet dataset powered by CLAS. In a close-set retrieval setting, our retrieval method achieves a mean reciprocal rank (MRR) of 0.58, top 1 accuracy of 42.27%, and top 10 accuracy of 89.64%.
Related papers
- Open-Vocabulary High-Resolution 3D (OVHR3D) Data Segmentation and Annotation Framework [1.1280113914145702]
This research aims to design and develop a comprehensive and efficient framework for 3D segmentation tasks.
The framework integrates Grounding DINO and Segment anything Model, augmented by an enhancement in 2D image rendering via 3D mesh.
arXiv Detail & Related papers (2024-12-09T07:39:39Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - ComboVerse: Compositional 3D Assets Creation Using Spatially-Aware Diffusion Guidance [76.7746870349809]
We present ComboVerse, a 3D generation framework that produces high-quality 3D assets with complex compositions by learning to combine multiple models.
Our proposed framework emphasizes spatial alignment of objects, compared with standard score distillation sampling.
arXiv Detail & Related papers (2024-03-19T03:39:43Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - UniG3D: A Unified 3D Object Generation Dataset [75.49544172927749]
UniG3D is a unified 3D object generation dataset constructed by employing a universal data transformation pipeline on ShapeNet datasets.
This pipeline converts each raw 3D model into comprehensive multi-modal data representation.
The selection of data sources for our dataset is based on their scale and quality.
arXiv Detail & Related papers (2023-06-19T07:03:45Z) - OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic
Perception, Reconstruction and Generation [107.71752592196138]
We propose OmniObject3D, a large vocabulary 3D object dataset with massive high-quality real-scanned 3D objects.
It comprises 6,000 scanned objects in 190 daily categories, sharing common classes with popular 2D datasets.
Each 3D object is captured with both 2D and 3D sensors, providing textured meshes, point clouds, multiview rendered images, and multiple real-captured videos.
arXiv Detail & Related papers (2023-01-18T18:14:18Z) - Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild [32.05421669957098]
Large datasets and scalable solutions have led to unprecedented advances in 2D recognition.
We revisit the task of 3D object detection by introducing a large benchmark, called Omni3D.
We show that Cube R-CNN outperforms prior works on the larger Omni3D and existing benchmarks.
arXiv Detail & Related papers (2022-07-21T17:56:22Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
A promising solution is to make better use of the synthetic dataset, which consists of CAD object models, to boost the learning on real datasets.
Recent work on 3D pre-training exhibits failure when transfer features learned on synthetic objects to other real-world applications.
In this work, we put forward a new method called RandomRooms to accomplish this objective.
arXiv Detail & Related papers (2021-08-17T17:56:12Z) - A Convolutional Architecture for 3D Model Embedding [1.3858051019755282]
We propose a deep learning architecture to handle 3D models as an input.
We show that the embedding representation conveys semantic information that helps to deal with the similarity assessment of 3D objects.
arXiv Detail & Related papers (2021-03-05T15:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.