Unifying KV Cache Compression for Large Language Models with LeanKV
- URL: http://arxiv.org/abs/2412.03131v1
- Date: Wed, 04 Dec 2024 08:51:23 GMT
- Title: Unifying KV Cache Compression for Large Language Models with LeanKV
- Authors: Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John C. S. Lui, Haibo Chen,
- Abstract summary: Large language models (LLMs) demonstrate exceptional performance but incur high serving costs due to substantial memory demands.
Existing KV cache compression methods, including quantization and pruning, struggle with limitations such as uniform treatment of keys and values.
We introduce LeanKV, a unified KV cache compression framework that enhances LLM serving efficiency without compromising accuracy.
- Score: 28.452123478834803
- License:
- Abstract: Large language models (LLMs) demonstrate exceptional performance but incur high serving costs due to substantial memory demands, with the key-value (KV) cache being a primary bottleneck. Existing KV cache compression methods, including quantization and pruning, struggle with limitations such as uniform treatment of keys and values and static memory allocation across attention heads. To address these challenges, we introduce LeanKV, a unified KV cache compression framework that enhances LLM serving efficiency without compromising accuracy through three innovations: (1) Hetero-KV quantization, which stores keys at a higher precision than values to reflect their greater impact on attention computations; (2) per-head dynamic sparsity, which allocates memory based on token importance per head and per request; and (3) unified KV compression, integrating mixed-precision quantization and selective pruning to enable a smooth tradeoff between model accuracy and memory efficiency. To efficiently support these techniques, LeanKV introduces systems optimizations including unified paging and on-GPU parallel memory management. Implemented on vLLM, LeanKV compresses the KV cache by $3.0\times$ to $5.0\times$ without accuracy loss and up to $11.0\times$ with under 5% accuracy loss, enhancing throughput by $1.9\times$ to $2.5\times$, and up to $6.9\times$.
Related papers
- More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
In large language models (LLMs), the memory usage of KV cache has become a critical bottleneck during inference.
The mainstream KV compression methods, including KV pruning and KV quantization, primarily focus on either token or precision dimension separately.
In this paper, we comprehensively investigate the token-precision trade-off in KV cache compression.
arXiv Detail & Related papers (2024-12-17T09:20:31Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
Long context poses significant challenges for inference efficiency.
We introduce ClusterKV, which recalls tokens at the granularity of semantic clusters.
Experiment results show that ClusterKV attains negligible accuracy loss across various tasks with 32k context lengths.
arXiv Detail & Related papers (2024-12-04T10:58:27Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
We propose a plug-and-play method called textit KVSharer, which shares the KV cache between layers to achieve layer-wise compression.
Experiments show that textit KVSharer can reduce KV cache computation by 30%, thereby lowering memory consumption.
We verify that textit KVSharer is compatible with existing intra-layer KV cache compression methods, and combining both can further save memory.
arXiv Detail & Related papers (2024-10-24T08:06:41Z) - Lossless KV Cache Compression to 2% [22.98828332096935]
This work introduces a novel architecture, Cross-Layer Latent Attention (CLLA), aimed at compressing the KV cache to less than 2% of its original size.
CLLA integrates attention head/dimension reduction, layer sharing, and quantization techniques, into a cohesive framework.
arXiv Detail & Related papers (2024-10-20T02:17:35Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - UNComp: Uncertainty-Aware Long-Context Compressor for Efficient Large Language Model Inference [38.11539884622708]
UNComp is an uncertainty-aware compression scheme that adaptively compresses both the hidden states and the KV cache.
Our method achieves a 1.6x speedup in the prefilling stage and reduces the KV cache to 4.74% of its original size.
Remarkably, in needle-in-a-haystack tasks, UNComp outperforms the full-size KV cache even when compressed to 9.38% of its original size.
arXiv Detail & Related papers (2024-10-04T02:32:36Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
We investigate whether attention-based information flow inside large language models (LLMs) is aggregated through noticeable patterns for long context processing.
Our observations reveal that LLMs aggregate information through Pyramidal Information Funneling where attention is scattering widely in lower layers.
Motivated by these insights, we developed Pyramid KV, a novel and effective KV cache compression method.
arXiv Detail & Related papers (2024-06-04T07:51:30Z) - ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification [19.985314022860432]
KV cache stores key and value states from previous tokens to avoid re-computation.
KV cache compression seeks to discern the saliency of tokens, preserving vital information while aggressively compressing those of less importance.
We present ZipCache, an accurate and efficient KV cache quantization method for LLMs.
arXiv Detail & Related papers (2024-05-23T07:37:16Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
We develop a tuning-free 2bit KV cache quantization algorithm named KIVI.
KIVI can enable Llama, Falcon, and Mistral models to maintain almost the same quality while using $mathbf2.6times$ less peak memory.
arXiv Detail & Related papers (2024-02-05T06:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.