Dynamic Consistent $k$-Center Clustering with Optimal Recourse
- URL: http://arxiv.org/abs/2412.03238v1
- Date: Wed, 04 Dec 2024 11:39:03 GMT
- Title: Dynamic Consistent $k$-Center Clustering with Optimal Recourse
- Authors: Sebastian Forster, Antonis Skarlatos,
- Abstract summary: We prove that the $k$-center clustering problem admits optimal recourse bounds by developing a deterministic constant-factor approximation with worst-case recourse of $1$ per update.
Our incremental algorithm improves over the $8$-approximation algorithm by Charikar, Chekuri, Feder, and Motwani.
- Score: 0.6077284832583713
- License:
- Abstract: Given points from an arbitrary metric space and a sequence of point updates sent by an adversary, what is the minimum recourse per update (i.e., the minimum number of changes needed to the set of centers after an update), in order to maintain a constant-factor approximation to a $k$-clustering problem? This question has received attention in recent years under the name consistent clustering. Previous works by Lattanzi and Vassilvitskii [ICLM '17] and Fichtenberger, Lattanzi, Norouzi-Fard, and Svensson [SODA '21] studied $k$-clustering objectives, including the $k$-center and the $k$-median objectives, under only point insertions. In this paper we study the $k$-center objective in the fully dynamic setting, where the update is either a point insertion or a point deletion. Before our work, {\L}\k{a}cki, Haeupler, Grunau, Rozho\v{n}, and Jayaram [SODA '24] gave a deterministic fully dynamic constant-factor approximation algorithm for the $k$-center objective with worst-case recourse of $2$ per update. In this work, we prove that the $k$-center clustering problem admits optimal recourse bounds by developing a deterministic fully dynamic constant-factor approximation algorithm with worst-case recourse of $1$ per update. Moreover our algorithm performs simple choices based on light data structures, and thus is arguably more direct and faster than the previous one which uses a sophisticated combinatorial structure. Additionally, we develop a new deterministic decremental algorithm and a new deterministic incremental algorithm, both of which maintain a $6$-approximate $k$-center solution with worst-case recourse of $1$ per update. Our incremental algorithm improves over the $8$-approximation algorithm by Charikar, Chekuri, Feder, and Motwani [STOC '97]. Finally, we remark that since all three of our algorithms are deterministic, they work against an adaptive adversary.
Related papers
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Multi-Swap $k$-Means++ [30.967186562175893]
The $k$-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is often the practitioners' choice algorithm for optimizing the popular $k$-means clustering objective.
Lattanzi and Sohler (ICML) proposed augmenting $k$-means++ with $O(k log log k)$ local search steps to yield a $c$-approximation to the $k$-means clustering problem.
arXiv Detail & Related papers (2023-09-28T12:31:35Z) - Improved Learning-augmented Algorithms for k-means and k-medians
Clustering [8.04779839951237]
We consider the problem of clustering in the learning-augmented setting, where we are given a data set in $d$-dimensional Euclidean space.
We propose a deterministic $k$-means algorithm that produces centers with improved bound on clustering cost.
Our algorithm works even when the predictions are not very accurate, i.e. our bound holds for $alpha$ up to $1/2$, an improvement over $alpha$ being at most $1/7$ in the previous work.
arXiv Detail & Related papers (2022-10-31T03:00:11Z) - Local Stochastic Bilevel Optimization with Momentum-Based Variance
Reduction [104.41634756395545]
We study Federated Bilevel Optimization problems. Specifically, we first propose the FedBiO, a deterministic gradient-based algorithm.
We show FedBiO has complexity of $O(epsilon-1.5)$.
Our algorithms show superior performances compared to other baselines in numerical experiments.
arXiv Detail & Related papers (2022-05-03T16:40:22Z) - Better Algorithms for Individually Fair $k$-Clustering [4.936817539835045]
Jung, Kannan, and Lutz [FORC 2020] introduced a clustering algorithm with provable (approximate) fairness and objective guarantees for the $ell_infty$ or $k$-Center objective. Mahabadi and Vakilian [ICML 2020] revisited this problem to give a local-search algorithm for all $ell_p$-norms.
We prove that by modifying known LP rounding techniques, one gets a worst-case guarantee on the objective which is much better than in MV20, and empirically, this objective is extremely close to the optimal.
arXiv Detail & Related papers (2021-06-23T04:16:46Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - A Stochastic Alternating Balance $k$-Means Algorithm for Fair Clustering [0.0]
In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement, the clustering outcome might discriminate against people across different demographic groups.
We propose a novel alternating balance mini-batch $k$-means (SAKM) algorithm, which consists of $k$-means updates and group swap updates.
arXiv Detail & Related papers (2021-05-29T01:47:15Z) - Revisiting Priority $k$-Center: Fairness and Outliers [5.3898004059026325]
We develop a framework that yields constant factor approximation algorithms for Priority $k$-Center with outliers.
Our framework extends to generalizations of Priority $k$-Center to matroid and knapsack constraints.
arXiv Detail & Related papers (2021-03-04T21:15:37Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.