TASR: Timestep-Aware Diffusion Model for Image Super-Resolution
- URL: http://arxiv.org/abs/2412.03355v1
- Date: Wed, 04 Dec 2024 14:39:54 GMT
- Title: TASR: Timestep-Aware Diffusion Model for Image Super-Resolution
- Authors: Qinwei Lin, Xiaopeng Sun, Yu Gao, Yujie Zhong, Dengjie Li, Zheng Zhao, Haoqian Wang,
- Abstract summary: We explore the temporal dynamics of information infusion through ControlNet.<n>We introduce a novel timestep-aware diffusion model that adaptively integrates features from both ControlNet and the pre-trained Stable Diffusion.<n>Our method enhances the transmission of LR information in the early stages of diffusion to guarantee image fidelity.
- Score: 22.156869195433615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have recently achieved outstanding results in the field of image super-resolution. These methods typically inject low-resolution (LR) images via ControlNet.In this paper, we first explore the temporal dynamics of information infusion through ControlNet, revealing that the input from LR images predominantly influences the initial stages of the denoising process. Leveraging this insight, we introduce a novel timestep-aware diffusion model that adaptively integrates features from both ControlNet and the pre-trained Stable Diffusion (SD). Our method enhances the transmission of LR information in the early stages of diffusion to guarantee image fidelity and stimulates the generation ability of the SD model itself more in the later stages to enhance the detail of generated images. To train this method, we propose a timestep-aware training strategy that adopts distinct losses at varying timesteps and acts on disparate modules. Experiments on benchmark datasets demonstrate the effectiveness of our method. Code: https://github.com/SleepyLin/TASR
Related papers
- ControlSR: Taming Diffusion Models for Consistent Real-World Image Super Resolution [68.72454974431749]
We present ControlSR, a new method that can tame Diffusion Models for consistent real-world image super-resolution (Real-ISR)
Our model can achieve better performance across multiple metrics on several test sets and generate more consistent SR results with LR images than existing methods.
arXiv Detail & Related papers (2024-10-18T08:35:57Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - AddSR: Accelerating Diffusion-based Blind Super-Resolution with Adversarial Diffusion Distillation [43.62480338471837]
Blind super-resolution methods based on stable diffusion showcase formidable generative capabilities in reconstructing clear high-resolution images with intricate details from low-resolution inputs.
Their practical applicability is often hampered by poor efficiency, stemming from the requirement of thousands or hundreds of sampling steps.
Inspired by the efficient adversarial diffusion distillation (ADD), we designnameto address this issue by incorporating the ideas of both distillation and ControlNet.
arXiv Detail & Related papers (2024-04-02T08:07:38Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
We propose to leverage the pre-trained latent diffusion model to perform the neural ISP for enhancing extremely low-light images.
Specifically, to tailor the pre-trained latent diffusion model to operate on the RAW domain, we train a set of lightweight taming modules.
We observe different roles of UNet denoising and decoder reconstruction in the latent diffusion model, which inspires us to decompose the low-light image enhancement task into latent-space low-frequency content generation and decoding-phase high-frequency detail maintenance.
arXiv Detail & Related papers (2023-12-02T04:31:51Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data.
We propose a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process.
arXiv Detail & Related papers (2023-07-27T07:22:51Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.