Tango*: Constrained synthesis planning using chemically informed value functions
- URL: http://arxiv.org/abs/2412.03424v1
- Date: Wed, 04 Dec 2024 16:14:02 GMT
- Title: Tango*: Constrained synthesis planning using chemically informed value functions
- Authors: Daniel Armstrong, Zlatko Joncev, Jeff Guo, Philippe Schwaller,
- Abstract summary: We introduce a simple guided search which allows solving the starting material-constrained synthesis planning problem.
We find the Tango* cost function catalyses strong improvements for the bidirectional DESP methods.
Our method achieves lower wall clock times while proposing synthetic routes of similar length, a common metric for route quality.
- Score: 1.6787839854263589
- License:
- Abstract: Computer-aided synthesis planning (CASP) has made significant strides in generating retrosynthetic pathways for simple molecules in a non-constrained fashion. Recent work introduces a specialised bidirectional search algorithm with forward and retro expansion to address the starting material-constrained synthesis problem, allowing CASP systems to provide synthesis pathways from specified starting materials, such as waste products or renewable feed-stocks. In this work, we introduce a simple guided search which allows solving the starting material-constrained synthesis planning problem using an existing, uni-directional search algorithm, Retro*. We show that by optimising a single hyperparameter, Tango* outperforms existing methods in terms of efficiency and solve rate. We find the Tango* cost function catalyses strong improvements for the bidirectional DESP methods. Our method also achieves lower wall clock times while proposing synthetic routes of similar length, a common metric for route quality. Finally, we highlight potential reasons for the strong performance of Tango over neural guided search methods
Related papers
- Double-Ended Synthesis Planning with Goal-Constrained Bidirectional Search [27.09693306892583]
We present a formulation of synthesis planning with starting material constraints.
We propose Double-Ended Synthesis Planning (DESP), a novel CASP algorithm under a bidirectional graph search scheme.
DESP can make use of existing one-step retrosynthesis models, and we anticipate its performance to scale as these one-step model capabilities improve.
arXiv Detail & Related papers (2024-07-08T18:56:00Z) - Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization [23.075466444266528]
This study conducts a thorough examination of learning and search techniques for logic synthesis.
We present ABC-RL, a meticulously tuned $alpha$ parameter that adeptly adjusts recommendations from pre-trained agents during the search process.
Our findings showcase substantial enhancements in the Quality-of-result (QoR) of synthesized circuits, boasting improvements of up to 24.8% compared to state-of-the-art techniques.
arXiv Detail & Related papers (2024-01-22T18:46:30Z) - Evolutionary Retrosynthetic Route Planning [8.19851864095418]
This paper proposes a novel approach for retrosynthetic route planning based on evolutionary optimization.
It marks the first use of Evolutionary Algorithm (EA) in the field of multi-step retrosynthesis.
arXiv Detail & Related papers (2023-10-08T14:47:41Z) - INVICTUS: Optimizing Boolean Logic Circuit Synthesis via Synergistic
Learning and Search [18.558280701880136]
State-of-the-art logic synthesis algorithms have a large number of logic minimizations.
INVICTUS generates a sequence of logic minimizations based on a training dataset of previously seen designs.
arXiv Detail & Related papers (2023-05-22T15:50:42Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions.
Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr"odinger Bridge problem.
In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step.
arXiv Detail & Related papers (2022-11-02T14:35:13Z) - FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning [58.47265392465442]
Retrosynthetic planning aims to devise a complete multi-step synthetic route from starting materials to a target molecule.
Current strategies use a decoupled approach of single-step retrosynthesis models and search algorithms.
We propose a novel framework that utilizes context information for improved retrosynthetic planning.
arXiv Detail & Related papers (2022-09-30T08:44:58Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z) - Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search [83.22850633478302]
Retrosynthetic planning identifies a series of reactions that can lead to the synthesis of a target product.
Existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality.
We propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently.
arXiv Detail & Related papers (2020-06-29T05:53:33Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
This research project focuses on the use of autoencoders networks to construct a continuous parameterization for facies models.
We benchmark seven different formulations, including VAE, generative adversarial network (GAN), Wasserstein GAN, variational auto-encoding GAN, principal component analysis (PCA) with cycle GAN, PCA with transfer style network and VAE with style loss.
arXiv Detail & Related papers (2020-05-08T21:32:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.