Gauge fields induced by curved spacetime
- URL: http://arxiv.org/abs/2412.03647v4
- Date: Thu, 24 Jul 2025 06:45:00 GMT
- Title: Gauge fields induced by curved spacetime
- Authors: Pasquale Marra,
- Abstract summary: I found an extended duality (triality) between Dirac fermions in periodic spacetime metrics, nonrelativistic fermions in gauge fields, and in periodic scalar fields on a lattice.<n>This indicates an unexpected equivalence between spacetime metrics, gauge fields, and scalar fields on the lattice.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I found an extended duality (triality) between Dirac fermions in periodic spacetime metrics, nonrelativistic fermions in gauge fields (e.g., Harper-Hofstadter model), and in periodic scalar fields on a lattice (e.g., Aubry-Andr\'e model). This indicates an unexpected equivalence between spacetime metrics, gauge fields, and scalar fields on the lattice, which is understood as different physical representations of the same mathematical object, the quantum group $\mathcal{U}_q(\mathfrak{sl}_2)$. This quantum group is generated by the exponentiation of two canonical conjugate operators, namely a linear combination of position and momentum (periodic spacetime metrics), the two components of the gauge invariant momentum (gauge fields), position and momentum (periodic scalar fields). Hence, on a lattice, Dirac fermions in a periodic spacetime metric are equivalent to nonrelativistic fermions in a periodic scalar field after a proper canonical transformation. The three lattice Hamiltonians (periodic spacetime metric, Harper-Hofstadter, and Aubry-Andr\'e) share the same properties, namely fractal phase diagrams, self-similarity, $S$-duality, topological invariants, flat bands, and topologically quantized current in the incommensurate regimes. In essence, this work unveils an unexpected link between gravity and gauge fields, opens new avenues for studying analog gravity, e.g., the Unruh effect and universe expansions/contractions, suggests the existence of an $S$-duality of spacetime curvatures, and hints at novel pathways to quantized gravity theories.
Related papers
- The metric from energy-momentum non-conservation: Generalizing Noether and completing spectral geometry [0.0]
We show that a manifold's shape, i.e., its metric, can be reconstructed from its resonant sound when tapped lightly.<n>This finding yields a generalization of Noether's theorem: the specific pattern of energy-momentum non-conservation on a generic curved spacetime is sufficient to calculate the metric.
arXiv Detail & Related papers (2025-06-12T18:00:00Z) - Metric-induced nonhermitian physics [0.0]
I consider the long-standing issue of the hermicity of the Dirac equation in curved spacetime metrics.
I renormalize the field by a scaling function, which is related to the determinant of the metric, and then regularize the renormalized field on a discrete lattice.
arXiv Detail & Related papers (2024-12-18T19:00:02Z) - Gravity from entropy [0.0]
Gravity is derived from an entropic action coupling matter fields with geometry.<n>The proposed entropic action is the quantum relative entropy between the metric of spacetime and the metric induced by the matter fields.
arXiv Detail & Related papers (2024-08-26T16:19:37Z) - Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - Spacetime quantum and classical mechanics with dynamical foliation [0.0]
We extend the time choice of the Legendre transform to a dynamical variable.
A canonical-like quantization of the formalism is then presented in which the fields satisfy spacetime commutation relations.
The problem of establishing a correspondence between the new noncausal framework and conventional QM is solved through a generalization of spacelike correlators to spacetime.
arXiv Detail & Related papers (2023-11-11T05:51:21Z) - Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Exotic quantum liquids in Bose-Hubbard models with spatially-modulated
symmetries [0.0]
We investigate the effect that spatially modulated continuous conserved quantities can have on quantum ground states.
We show that such systems feature a non-trivial Hilbert space fragmentation for momenta incommensurate with the lattice.
We conjecture that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal direction.
arXiv Detail & Related papers (2023-07-17T18:14:54Z) - Casimir force in discrete scalar fields I: 1D and 2D cases [0.0]
We calculate the Casimir force between parallel plates for a massless scalar field.
Time is treated as continuous while the scalar field forms a spatial periodic lattice.
The dispersion relation for both square and triangular lattices accurately reproduces the subtle Casimir effect.
arXiv Detail & Related papers (2023-06-26T14:54:31Z) - Entanglement entropy in conformal quantum mechanics [68.8204255655161]
We consider sets of states in conformal quantum mechanics associated to generators of time evolution whose orbits cover different regions of the time domain.
States labelled by a continuous global time variable define the two-point correlation functions of the theory seen as a one-dimensional conformal field theory.
arXiv Detail & Related papers (2023-06-21T14:21:23Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - On the two-dimensional time-dependent anisotropic harmonic oscillator in
a magnetic field [0.0]
We have considered a two-dimensional anisotropic harmonic oscillator placed in a time-dependent magnetic field.
An orthonormal basis of the Hilbert space consisting of the eigenvectors of $hatmathcalI$ is obtained.
Separability Criterion for the bipartite coherent states corresponding to our system has been demonstrated.
arXiv Detail & Related papers (2022-06-30T17:19:09Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Covariant Quantum Mechanics and Quantum Spacetime [0.0]
The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation.
Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product.
arXiv Detail & Related papers (2020-02-04T08:55:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.