Entanglement asymmetry in periodically driven quantum systems
- URL: http://arxiv.org/abs/2412.03654v2
- Date: Thu, 19 Dec 2024 08:50:04 GMT
- Title: Entanglement asymmetry in periodically driven quantum systems
- Authors: Tista Banerjee, Suchetan Das, K. Sengupta,
- Abstract summary: We study the dynamics of entanglement asymmetry in periodically driven quantum systems.
We use a periodically driven XY chain as a model for a driven integrable quantum system.
- Score: 0.0
- License:
- Abstract: We study the dynamics of entanglement asymmetry in periodically driven quantum systems. Using a periodically driven XY chain as a model for a driven integrable quantum system, we provide semi-analytic results for the behavior of the dynamics of the entanglement asymmetry, $\Delta S$, as a function of the drive frequency. Our analysis identifies special drive frequencies at which the driven XY chain exhibits dynamic symmetry restoration and displays quantum Mpemba effect over a long timescale; we identify an emergent approximate symmetry in its Floquet Hamiltonian which plays a crucial role for realization of both these phenomena. We follow these results by numerical computation of $\Delta S$ for the non-integrable driven Rydberg atom chain and obtain similar emergent-symmetry-induced symmetry restoration and quantum Mpemba effect in the prethermal regime for such a system. Finally, we provide an exact analytic computation of the entanglement asymmetry for a periodically driven conformal field theory (CFT) on a strip. Such a driven CFT, depending on the drive amplitude and frequency, exhibits two distinct phases, heating and non-heating, that are separated by a critical line. Our results show that for $m$ cycles of a periodic drive with time period $T$, $\Delta S \sim \ln mT$ [$\ln (\ln mT)$] in the heating phase [on the critical line] for a generic CFT; in contrast, in the non-heating phase, $\Delta S$ displays small amplitude oscillations around it's initial value as a function of $mT$. We provide a phase diagram for the behavior of $\Delta S$ for such driven CFTs as a function of the drive frequency and amplitude.
Related papers
- Prethermal Floquet time crystals in chiral multiferroic chains and applications as quantum sensors of AC fields [41.94295877935867]
We study the emergence of prethermal Floquet Time Crystal (pFTC) in disordered multiferroic chains.
We derive the phase diagram of the model, characterizing the magnetization, entanglement, and coherence dynamics of the system.
We also explore the application of the pFTC as quantum sensors of AC fields.
arXiv Detail & Related papers (2024-10-23T03:15:57Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Prethermal fragmentation in a periodically driven Fermionic chain [0.0]
We study a Fermionic chain with nearest-neighbor hopping and density-density interactions, where the nearest-neighbor interaction term is driven periodically.
We show that such a driven chain exhibits prethermal strong Hilbert space fragmentation (HSF) in the high drive amplitude regime at specific drive frequencies.
arXiv Detail & Related papers (2022-12-07T19:00:04Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Linear Response for pseudo-Hermitian Hamiltonian Systems: Application to
PT-Symmetric Qubits [0.0]
We develop the linear response theory formulation suitable for application to various pHH systems.
We apply our results to two textitPT-symmetric non-Hermitian quantum systems.
arXiv Detail & Related papers (2022-06-18T10:05:30Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Periodically driven Rydberg chains with staggered detuning [0.0]
We study the stroboscopic dynamics of a driven finite Rydberg chain with staggered ($Delta$) and time-dependent uniform ($lambda(t)$) detuning terms using exact diagonalization (ED)
We show that at intermediate drive ($omega_D$), the presence of a finite $Delta$ results in violation of the eigenstate thermalization hypothesis (ETH) via clustering of Floquet eigenstates.
The violation of ETH in these driven finite-sized chains is also evident from the dynamical freezing displayed by the density density correlation function at specific $omega_D
arXiv Detail & Related papers (2021-12-29T19:04:07Z) - Measurement-induced criticality in $\mathbb{Z}_2$-symmetric quantum
automaton circuits [6.723539428281127]
We study entanglement dynamics in hybrid $mathbbZ$-symmetric quantum automaton circuits.
We show that there exists an entanglement phase transition from a volume law phase to a critical phase by varying the measurement rate $p$.
arXiv Detail & Related papers (2021-10-20T18:52:14Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Restoring coherence via aperiodic drives in a many-body quantum system [0.0]
We study the unitary dynamics of randomly or quasi-periodically driven tilted Bose-Hubbard (tBH) model in one dimension deep inside its Mott phase.
We show that starting from a regime where the periodic drive leads to rapid thermalization, a random drive, which consists of a random sequence of square pulses with period $T+alpha dT$, restores coherent oscillations for special values of $dT$.
A similar phenomenon can be seen for a quasi-periodic drive following a Thue-Morse sequence where such coherent behavior is shown to occur for a larger number of points in the $
arXiv Detail & Related papers (2020-02-20T11:33:13Z) - Entanglement robustness to excitonic spin precession in a quantum dot [43.55994393060723]
A semiconductor quantum dot (QD) is an attractive resource to generate polarization-entangled photon pairs.
We study the excitonic spin precession (flip-flop) in a family of QDs with different excitonic fine-structure splitting (FSS)
Our results reveal that coherent processes leave the time post-selected entanglement of QDs unaffected while changing the eigenstates of the system.
arXiv Detail & Related papers (2020-01-31T13:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.