Detecting Redundant Health Survey Questions Using Language-agnostic BERT Sentence Embedding (LaBSE)
- URL: http://arxiv.org/abs/2412.03817v1
- Date: Thu, 05 Dec 2024 02:18:35 GMT
- Title: Detecting Redundant Health Survey Questions Using Language-agnostic BERT Sentence Embedding (LaBSE)
- Authors: Sunghoon Kang, Hyeoneui Kim, Hyewon Park, Ricky Taira,
- Abstract summary: We compiled various health survey questions authored in both English and Korean from the NIH CDE Repository, PROMIS, Korean public health agencies, and academic publications.
A randomized question pairing scheme was used to generate a Semantic Text Similarity dataset consisting of 1758 question pairs.
Similarity scores between each question pair were assigned by two human experts.
- Score: 0.27979733090439307
- License:
- Abstract: The goal of this work was to compute the semantic similarity among publicly available health survey questions in order to facilitate the standardization of survey-based Person-Generated Health Data (PGHD). We compiled various health survey questions authored in both English and Korean from the NIH CDE Repository, PROMIS, Korean public health agencies, and academic publications. Questions were drawn from various health lifelog domains. A randomized question pairing scheme was used to generate a Semantic Text Similarity (STS) dataset consisting of 1758 question pairs. Similarity scores between each question pair were assigned by two human experts. The tagged dataset was then used to build three classifiers featuring: Bag-of-Words, SBERT with BERT-based embeddings, and SBRET with LaBSE embeddings. The algorithms were evaluated using traditional contingency statistics. Among the three algorithms, SBERT-LaBSE demonstrated the highest performance in assessing question similarity across both languages, achieving an Area Under the Receiver Operating Characteristic (ROC) and Precision-Recall Curves of over 0.99. Additionally, it proved effective in identifying cross-lingual semantic similarities.The SBERT-LaBSE algorithm excelled at aligning semantically equivalent sentences across both languages but encountered challenges in capturing subtle nuances and maintaining computational efficiency. Future research should focus on testing with larger multilingual datasets and on calibrating and normalizing scores across the health lifelog domains to improve consistency. This study introduces the SBERT-LaBSE algorithm for calculating semantic similarity across two languages, showing it outperforms BERT-based models and the Bag of Words approach, highlighting its potential to improve semantic interoperability of survey-based PGHD across language barriers.
Related papers
- HYBRINFOX at CheckThat! 2024 -- Task 2: Enriching BERT Models with the Expert System VAGO for Subjectivity Detection [0.8083061106940517]
The HYBRINFOX method ranked 1st with a macro F1 score of 0.7442 on the evaluation data.
We explain the principles of our hybrid approach, and outline ways in which the method could be improved for other languages besides English.
arXiv Detail & Related papers (2024-07-04T09:29:19Z) - Retrieval and Generative Approaches for a Pregnancy Chatbot in Nepali
with Stemmed and Non-Stemmed Data : A Comparative Study [0.0]
The performance of datasets in Nepali language has been analyzed for each approach.
BERT-based pre-trained models perform well on non-stemmed data whereas scratch transformer models have better performance on stemmed data.
arXiv Detail & Related papers (2023-11-12T17:16:46Z) - Unify word-level and span-level tasks: NJUNLP's Participation for the
WMT2023 Quality Estimation Shared Task [59.46906545506715]
We introduce the NJUNLP team to the WMT 2023 Quality Estimation (QE) shared task.
Our team submitted predictions for the English-German language pair on all two sub-tasks.
Our models achieved the best results in English-German for both word-level and fine-grained error span detection sub-tasks.
arXiv Detail & Related papers (2023-09-23T01:52:14Z) - PAXQA: Generating Cross-lingual Question Answering Examples at Training
Scale [53.92008514395125]
PAXQA (Projecting annotations for cross-lingual (x) QA) decomposes cross-lingual QA into two stages.
We propose a novel use of lexically-constrained machine translation, in which constrained entities are extracted from the parallel bitexts.
We show that models fine-tuned on these datasets outperform prior synthetic data generation models over several extractive QA datasets.
arXiv Detail & Related papers (2023-04-24T15:46:26Z) - CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual
Labeled Sequence Translation [113.99145386490639]
Cross-lingual NER can transfer knowledge between languages via aligned cross-lingual representations or machine translation results.
We propose a Cross-lingual Entity Projection framework (CROP) to enable zero-shot cross-lingual NER.
We adopt a multilingual labeled sequence translation model to project the tagged sequence back to the target language and label the target raw sentence.
arXiv Detail & Related papers (2022-10-13T13:32:36Z) - RuArg-2022: Argument Mining Evaluation [69.87149207721035]
This paper is a report of the organizers on the first competition of argumentation analysis systems dealing with Russian language texts.
A corpus containing 9,550 sentences (comments on social media posts) on three topics related to the COVID-19 pandemic was prepared.
The system that won the first place in both tasks used the NLI (Natural Language Inference) variant of the BERT architecture.
arXiv Detail & Related papers (2022-06-18T17:13:37Z) - Investigating Lexical Replacements for Arabic-English Code-Switched Data
Augmentation [32.885722714728765]
We investigate data augmentation techniques for code-switching (CS) NLP systems.
We perform lexical replacements using word-aligned parallel corpora.
We compare these approaches against dictionary-based replacements.
arXiv Detail & Related papers (2022-05-25T10:44:36Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
We extend the vanilla pretrain-finetune pipeline with extra code-switching restore task to bridge the gap between the pretrain and finetune stages.
Our approach could narrow the cross-lingual sentence representation distance and improve low-frequency word translation with trivial computational cost.
arXiv Detail & Related papers (2022-04-16T16:08:38Z) - Majority Voting with Bidirectional Pre-translation For Bitext Retrieval [2.580271290008534]
A popular approach has been to mine so-called "pseudo-parallel" sentences from paired documents in two languages.
In this paper, we outline some problems with current methods, propose computationally economical solutions to those problems, and demonstrate success with novel methods.
We make the code and data used for our experiments publicly available.
arXiv Detail & Related papers (2021-03-10T22:24:01Z) - Exploring Cross-sentence Contexts for Named Entity Recognition with BERT [1.4998865865537996]
We present a study exploring the use of cross-sentence information for NER using BERT models in five languages.
We find that adding context in the form of additional sentences to BERT input increases NER performance on all of the tested languages and models.
We propose a straightforward method, Contextual Majority Voting (CMV), to combine different predictions for sentences and demonstrate this to further increase NER performance with BERT.
arXiv Detail & Related papers (2020-06-02T12:34:52Z) - The Secret is in the Spectra: Predicting Cross-lingual Task Performance
with Spectral Similarity Measures [83.53361353172261]
We present a large-scale study focused on the correlations between monolingual embedding space similarity and task performance.
We introduce several isomorphism measures between two embedding spaces, based on the relevant statistics of their individual spectra.
We empirically show that 1) language similarity scores derived from such spectral isomorphism measures are strongly associated with performance observed in different cross-lingual tasks.
arXiv Detail & Related papers (2020-01-30T00:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.