Privacy-Preserving in Medical Image Analysis: A Review of Methods and Applications
- URL: http://arxiv.org/abs/2412.03924v1
- Date: Thu, 05 Dec 2024 06:56:06 GMT
- Title: Privacy-Preserving in Medical Image Analysis: A Review of Methods and Applications
- Authors: Yanming Zhu, Xuefei Yin, Alan Wee-Chung Liew, Hui Tian,
- Abstract summary: Review offers a comprehensive overview of privacy-preserving techniques in medical image analysis.
Includes encryption, differential privacy, homomorphic encryption, federated learning, and generative adversarial networks.
We explore the application of these techniques across various medical image analysis tasks, such as diagnosis, pathology, and telemedicine.
- Score: 19.14185066631612
- License:
- Abstract: With the rapid advancement of artificial intelligence and deep learning, medical image analysis has become a critical tool in modern healthcare, significantly improving diagnostic accuracy and efficiency. However, AI-based methods also raise serious privacy concerns, as medical images often contain highly sensitive patient information. This review offers a comprehensive overview of privacy-preserving techniques in medical image analysis, including encryption, differential privacy, homomorphic encryption, federated learning, and generative adversarial networks. We explore the application of these techniques across various medical image analysis tasks, such as diagnosis, pathology, and telemedicine. Notably, we organizes the review based on specific challenges and their corresponding solutions in different medical image analysis applications, so that technical applications are directly aligned with practical issues, addressing gaps in the current research landscape. Additionally, we discuss emerging trends, such as zero-knowledge proofs and secure multi-party computation, offering insights for future research. This review serves as a valuable resource for researchers and practitioners and can help advance privacy-preserving in medical image analysis.
Related papers
- Medical Image Data Provenance for Medical Cyber-Physical System [8.554664822046966]
This study proposes using watermarking techniques to embed a device fingerprint (DFP) into captured images.
The DFP, representing the unique attributes of the capturing device and raw image, is embedded into raw images before storage.
A robust remote validation method is introduced to authenticate images, enhancing the integrity of medical image data in interconnected healthcare systems.
arXiv Detail & Related papers (2024-03-22T13:24:44Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Survey on Adversarial Attack and Defense for Medical Image Analysis: Methods and Challenges [64.63744409431001]
We present a comprehensive survey on advances in adversarial attacks and defenses for medical image analysis.
For a fair comparison, we establish a new benchmark for adversarially robust medical diagnosis models.
arXiv Detail & Related papers (2023-03-24T16:38:58Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIA is a trustworthy deep learning framework for medical image analysis.
It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
arXiv Detail & Related papers (2022-12-06T05:30:22Z) - A Review of Causality for Learning Algorithms in Medical Image Analysis [12.249809900292798]
We analyze machine learning for medical image analysis within the framework of Technology Readiness Levels.
We review how causal analysis methods can fill a gap when creating robust and adaptable medical image analysis algorithms.
arXiv Detail & Related papers (2022-06-11T11:04:13Z) - Self-supervised learning methods and applications in medical imaging
analysis: A survey [0.0]
The article reviews the state-of-the-art research directions in self-supervised learning approaches for image data with concentration on their applications in the field of medical imaging analysis.
The article covers (40) of the most recent researches in the field of self-supervised learning in medical imaging analysis aiming at shedding the light on the recent innovation in the field.
arXiv Detail & Related papers (2021-09-17T17:01:42Z) - Computer-Assisted Analysis of Biomedical Images [1.0116577992023341]
This thesis aims at proposing novel and advanced computer-assisted methods for biomedical image analysis.
The ultimate goal of these research studies is to gain clinically and biologically useful insights that can guide differential diagnosis and therapies.
arXiv Detail & Related papers (2021-06-04T21:59:48Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
We reviewed and summarized more than 200 recently published papers to provide a comprehensive overview of applying deep learning methods in various medical image analysis tasks.
Especially, we emphasize the latest progress and contributions of state-of-the-art unsupervised and semi-supervised deep learning in medical images.
arXiv Detail & Related papers (2021-05-27T18:05:12Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis.
One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems.
arXiv Detail & Related papers (2021-02-07T19:12:32Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.