On the Lack of Robustness of Binary Function Similarity Systems
- URL: http://arxiv.org/abs/2412.04163v1
- Date: Thu, 05 Dec 2024 13:54:53 GMT
- Title: On the Lack of Robustness of Binary Function Similarity Systems
- Authors: Gianluca Capozzi, Tong Tang, Jie Wan, Ziqi Yang, Daniele Cono D'Elia, Giuseppe Antonio Di Luna, Lorenzo Cavallaro, Leonardo Querzoni,
- Abstract summary: We assess the resiliency of state-of-the-art machine learning models against adversarial attacks.
We demonstrate that this attack is successful in compromising all the models, achieving average attack success rates of 57.06% and 95.81% depending on the problem settings.
- Score: 13.842698930725625
- License:
- Abstract: Binary function similarity, which often relies on learning-based algorithms to identify what functions in a pool are most similar to a given query function, is a sought-after topic in different communities, including machine learning, software engineering, and security. Its importance stems from the impact it has in facilitating several crucial tasks, from reverse engineering and malware analysis to automated vulnerability detection. Whereas recent work cast light around performance on this long-studied problem, the research landscape remains largely lackluster in understanding the resiliency of the state-of-the-art machine learning models against adversarial attacks. As security requires to reason about adversaries, in this work we assess the robustness of such models through a simple yet effective black-box greedy attack, which modifies the topology and the content of the control flow of the attacked functions. We demonstrate that this attack is successful in compromising all the models, achieving average attack success rates of 57.06% and 95.81% depending on the problem settings (targeted and untargeted attacks). Our findings are insightful: top performance on clean data does not necessarily relate to top robustness properties, which explicitly highlights performance-robustness trade-offs one should consider when deploying such models, calling for further research.
Related papers
- Efficient Data-Free Model Stealing with Label Diversity [22.8804507954023]
Machine learning as a Service (ML) allows users to query the machine learning model in an API manner, which provides an opportunity for users to enjoy the benefits brought by the high-performance model trained on valuable data.
This interface boosts the proliferation of machine learning based applications, while on the other hand, it introduces the attack surface for model stealing attacks.
Existing model stealing attacks have relaxed their attack assumptions to the data-free setting, while keeping the effectiveness.
In this paper, we revisit the model stealing problem from a diversity perspective and demonstrate that keeping the generated data samples more diverse across all the classes is the critical point
arXiv Detail & Related papers (2024-03-29T18:52:33Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - Sparse and Transferable Universal Singular Vectors Attack [5.498495800909073]
We propose a novel sparse universal white-box adversarial attack.
Our approach is based on truncated power providing sparsity to $(p,q)$-singular vectors of the hidden layers of Jacobian matrices.
Our findings demonstrate the vulnerability of state-of-the-art models to sparse attacks and highlight the importance of developing robust machine learning systems.
arXiv Detail & Related papers (2024-01-25T09:21:29Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - Improving robustness of jet tagging algorithms with adversarial
training: exploring the loss surface [0.0]
We study robustness of models to investigate how well they perform under slight distortions of input features.
Especially for tasks that involve many (low-level) inputs, the application of deep neural networks brings new challenges.
A corresponding defense strategy, adversarial training, improves robustness, while maintaining high performance.
arXiv Detail & Related papers (2023-03-25T16:23:27Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
Data poisoning attacks represent a type of attack that consists of tampering the data samples fed to the model during the training phase, leading to a degradation in the models accuracy during the inference phase.
This work compiles the most relevant insights and findings found in the latest existing literatures addressing this type of attacks.
A thorough assessment is performed on the reviewed works, comparing the effects of data poisoning on a wide range of ML models in real-world conditions.
arXiv Detail & Related papers (2022-02-21T14:43:38Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
We propose a novel understanding of adversarial robustness and apply it on more tasks including domain adaption and robustness boosting.
Experimental evaluations demonstrate the rationality and superiority of our proposed clustering strategy.
arXiv Detail & Related papers (2021-11-25T05:51:03Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.