SKIM: Any-bit Quantization Pushing The Limits of Post-Training Quantization
- URL: http://arxiv.org/abs/2412.04180v2
- Date: Sat, 07 Dec 2024 17:17:57 GMT
- Title: SKIM: Any-bit Quantization Pushing The Limits of Post-Training Quantization
- Authors: Runsheng Bai, Bo Liu, Qiang Liu,
- Abstract summary: Large Language Models (LLMs) exhibit impressive performance across various tasks, but deploying them for inference poses challenges.
We propose a new method called SKIM: Scaled K-means clustering wIth Mixed precision.
In terms of model perplexity, our method narrows the gap between 3-bit quantized LLaMA models and their full precision counterparts by 16.3% on average.
- Score: 7.198819240352308
- License:
- Abstract: Large Language Models (LLMs) exhibit impressive performance across various tasks, but deploying them for inference poses challenges. Their high resource demands often necessitate complex, costly multi-GPU pipelines, or the use of smaller, less capable models. While quantization offers a promising solution utilizing lower precision for model storage, existing methods frequently experience significant performance drops at lower precision levels. Additionally, they typically provide only a limited set of solutions at specific bit levels, many of which are extensively manually tuned. To address these challenges, we propose a new method called SKIM: Scaled K-means clustering wIth Mixed precision. Our approach introduces two novel techniques: 1. A greedy algorithm to solve approximately optimal bit allocation across weight channels, and 2. A trainable scaling vector for non-differentiable K-means clustering. These techniques substantially improve performance and can be adapted to any given bit. Notably, in terms of model perplexity, our method narrows the gap between 3-bit quantized LLaMA models and their full precision counterparts by 16.3% on average.
Related papers
- Nearly Lossless Adaptive Bit Switching [8.485009775430411]
Experimental results on the ImageNet-1K classification demonstrate that our methods have enough advantages to state-of-the-art one-shot joint QAT in both multi-precision and mixed-precision.
arXiv Detail & Related papers (2025-02-03T09:46:26Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid [36.33062038680275]
Large language models (LLMs) have shown immense potential across various domains.
Post-training quantization has emerged as a promising technique to reduce memory requirements and decoding latency.
We propose LeanQuant, a novel quantization method that is accurate, versatile, and scalable.
arXiv Detail & Related papers (2024-07-14T00:23:51Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
Quantization is a promising approach for reducing memory overhead and accelerating inference.
We propose a novel-aware quantization (ZSAQ) framework for the zero-shot quantization of various PLMs.
arXiv Detail & Related papers (2023-10-20T07:09:56Z) - QuantEase: Optimization-based Quantization for Language Models [17.333778751252392]
This work introduces Quantization (PTQ) of various quantization layers from recent advances of Large Language Models (LLMs)
Our CD-based approach features straightforward updates, relying solely on vector operations.
We also explore an outlier approach, allowing for retaining significant weights (outoutliers) with complete precision.
arXiv Detail & Related papers (2023-09-05T01:39:09Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - FracBits: Mixed Precision Quantization via Fractional Bit-Widths [29.72454879490227]
Mixed precision quantization is favorable with customized hardwares supporting arithmetic operations at multiple bit-widths.
We propose a novel learning-based algorithm to derive mixed precision models end-to-end under target computation constraints.
arXiv Detail & Related papers (2020-07-04T06:09:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.