Hipandas: Hyperspectral Image Joint Denoising and Super-Resolution by Image Fusion with the Panchromatic Image
- URL: http://arxiv.org/abs/2412.04201v1
- Date: Thu, 05 Dec 2024 14:39:29 GMT
- Title: Hipandas: Hyperspectral Image Joint Denoising and Super-Resolution by Image Fusion with the Panchromatic Image
- Authors: Shuang Xu, Zixiang Zhao, Haowen Bai, Chang Yu, Jiangjun Peng, Xiangyong Cao, Deyu Meng,
- Abstract summary: Recently launched satellites can concurrently acquire HSIs and panchromatic (PAN) images.
Hipandas is a novel learning paradigm that reconstructs HRHS images from noisy low-resolution HSIs and high-resolution PAN images.
- Score: 51.333064033152304
- License:
- Abstract: Hyperspectral images (HSIs) are frequently noisy and of low resolution due to the constraints of imaging devices. Recently launched satellites can concurrently acquire HSIs and panchromatic (PAN) images, enabling the restoration of HSIs to generate clean and high-resolution imagery through fusing PAN images for denoising and super-resolution. However, previous studies treated these two tasks as independent processes, resulting in accumulated errors. This paper introduces \textbf{H}yperspectral \textbf{I}mage Joint \textbf{Pand}enoising \textbf{a}nd Pan\textbf{s}harpening (Hipandas), a novel learning paradigm that reconstructs HRHS images from noisy low-resolution HSIs (LRHS) and high-resolution PAN images. The proposed zero-shot Hipandas framework consists of a guided denoising network, a guided super-resolution network, and a PAN reconstruction network, utilizing an HSI low-rank prior and a newly introduced detail-oriented low-rank prior. The interconnection of these networks complicates the training process, necessitating a two-stage training strategy to ensure effective training. Experimental results on both simulated and real-world datasets indicate that the proposed method surpasses state-of-the-art algorithms, yielding more accurate and visually pleasing HRHS images.
Related papers
- HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved
Diffusion Models [38.74983301496911]
Hyperspectral image (HSI) restoration aims at recovering clean images from degraded observations.
Existing model-based methods have limitations in accurately modeling the complex image characteristics.
This paper proposes an unsupervised HSI restoration framework with pre-trained diffusion model (HIR-Diff)
arXiv Detail & Related papers (2024-02-24T17:15:05Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - LDP-Net: An Unsupervised Pansharpening Network Based on Learnable
Degradation Processes [18.139096037746672]
We propose a novel unsupervised network based on learnable degradation processes, dubbed as LDP-Net.
A reblurring block and a graying block are designed to learn the corresponding degradation processes, respectively.
Experiments on Worldview2 and Worldview3 images demonstrate that our proposed LDP-Net can fuse PAN and LRMS images effectively without the help of HRMS samples.
arXiv Detail & Related papers (2021-11-24T13:21:22Z) - Unsupervised Cycle-consistent Generative Adversarial Networks for
Pan-sharpening [41.68141846006704]
We propose an unsupervised generative adversarial framework that learns from the full-scale images without the ground truths to alleviate this problem.
We extract the modality-specific features from the PAN and MS images with a two-stream generator, perform fusion in the feature domain, and then reconstruct the pan-sharpened images.
Results demonstrate that the proposed method can greatly improve the pan-sharpening performance on the full-scale images.
arXiv Detail & Related papers (2021-09-20T09:43:24Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution.
Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets)
We propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers.
arXiv Detail & Related papers (2021-07-06T14:11:03Z) - PGMAN: An Unsupervised Generative Multi-adversarial Network for
Pan-sharpening [46.84573725116611]
We propose an unsupervised framework that learns directly from the full-resolution images without any preprocessing.
We use a two-stream generator to extract the modality-specific features from the PAN and MS images, respectively, and develop a dual-discriminator to preserve the spectral and spatial information of the inputs when performing fusion.
arXiv Detail & Related papers (2020-12-16T16:21:03Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.