HumanEdit: A High-Quality Human-Rewarded Dataset for Instruction-based Image Editing
- URL: http://arxiv.org/abs/2412.04280v1
- Date: Thu, 05 Dec 2024 16:00:59 GMT
- Title: HumanEdit: A High-Quality Human-Rewarded Dataset for Instruction-based Image Editing
- Authors: Jinbin Bai, Wei Chow, Ling Yang, Xiangtai Li, Juncheng Li, Hanwang Zhang, Shuicheng Yan,
- Abstract summary: HumanEdit comprises 5,751 images and requires more than 2,500 hours of human effort across four stages.<n>The dataset includes six distinct types of editing instructions: Action, Add, Counting, Relation, Remove, and Replace.<n>HumanEdit offers comprehensive diversity and high-resolution $1024 times 1024$ content sourced from various domains.
- Score: 93.06156989757994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present HumanEdit, a high-quality, human-rewarded dataset specifically designed for instruction-guided image editing, enabling precise and diverse image manipulations through open-form language instructions. Previous large-scale editing datasets often incorporate minimal human feedback, leading to challenges in aligning datasets with human preferences. HumanEdit bridges this gap by employing human annotators to construct data pairs and administrators to provide feedback. With meticulously curation, HumanEdit comprises 5,751 images and requires more than 2,500 hours of human effort across four stages, ensuring both accuracy and reliability for a wide range of image editing tasks. The dataset includes six distinct types of editing instructions: Action, Add, Counting, Relation, Remove, and Replace, encompassing a broad spectrum of real-world scenarios. All images in the dataset are accompanied by masks, and for a subset of the data, we ensure that the instructions are sufficiently detailed to support mask-free editing. Furthermore, HumanEdit offers comprehensive diversity and high-resolution $1024 \times 1024$ content sourced from various domains, setting a new versatile benchmark for instructional image editing datasets. With the aim of advancing future research and establishing evaluation benchmarks in the field of image editing, we release HumanEdit at \url{https://huggingface.co/datasets/BryanW/HumanEdit}.
Related papers
- AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea [88.79769371584491]
We present AnyEdit, a comprehensive multi-modal instruction editing dataset.<n>We ensure the diversity and quality of the AnyEdit collection through three aspects: initial data diversity, adaptive editing process, and automated selection of editing results.<n>Experiments on three benchmark datasets show that AnyEdit consistently boosts the performance of diffusion-based editing models.
arXiv Detail & Related papers (2024-11-24T07:02:56Z) - UltraEdit: Instruction-based Fine-Grained Image Editing at Scale [43.222251591410455]
This paper presents UltraEdit, a large-scale (approximately 4 million editing samples) automatically generated dataset for instruction-based image editing.
Our key idea is to address the drawbacks in existing image editing datasets like InstructPix2Pix and MagicBrush, and provide a systematic approach to producing massive and high-quality image editing samples.
arXiv Detail & Related papers (2024-07-07T06:50:22Z) - EditWorld: Simulating World Dynamics for Instruction-Following Image Editing [68.6224340373457]
Diffusion models have significantly improved the performance of image editing.
We introduce world-instructed image editing, which defines and categorizes the instructions grounded by various world scenarios.
Our method significantly outperforms existing editing methods in this new task.
arXiv Detail & Related papers (2024-05-23T16:54:17Z) - SEED-Data-Edit Technical Report: A Hybrid Dataset for Instructional Image Editing [53.00272278754867]
SEED-Data-Edit is a hybrid dataset for instruction-guided image editing.
High-quality editing data produced by an automated pipeline.
Real-world scenario data collected from the internet.
High-precision multi-turn editing data annotated by humans.
arXiv Detail & Related papers (2024-05-07T04:55:47Z) - UniHuman: A Unified Model for Editing Human Images in the Wild [49.896715833075106]
We propose UniHuman, a unified model that addresses multiple facets of human image editing in real-world settings.
To enhance the model's generation quality and generalization capacity, we leverage guidance from human visual encoders.
In user studies, UniHuman is preferred by the users in an average of 77% of cases.
arXiv Detail & Related papers (2023-12-22T05:00:30Z) - MagicBrush: A Manually Annotated Dataset for Instruction-Guided Image Editing [48.204992417461575]
We introduce MagicBrush, the first large-scale, manually annotated dataset for instruction-guided real image editing.
We show that the new model can produce much better images according to human evaluation.
arXiv Detail & Related papers (2023-06-16T17:58:58Z) - HIVE: Harnessing Human Feedback for Instructional Visual Editing [127.29436858998064]
We present a novel framework to harness human feedback for instructional visual editing (HIVE)
Specifically, we collect human feedback on the edited images and learn a reward function to capture the underlying user preferences.
We then introduce scalable diffusion model fine-tuning methods that can incorporate human preferences based on the estimated reward.
arXiv Detail & Related papers (2023-03-16T19:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.