Coordinate- and spacetime-independent quantum physics
- URL: http://arxiv.org/abs/2412.04345v1
- Date: Thu, 05 Dec 2024 17:01:32 GMT
- Title: Coordinate- and spacetime-independent quantum physics
- Authors: V. A. Emelyanov, D. Robertz,
- Abstract summary: The concept of a particle is ambiguous in quantum field theory.
One of us has proposed a coordinate-frame-independent model of quantum particles.
- Score: 0.0
- License:
- Abstract: The concept of a particle is ambiguous in quantum field theory. It is generally agreed that particles depend not only on spacetime, but also on coordinates used to parametrise spacetime points. One of us has in contrast proposed a coordinate-frame-independent model of quantum particles within the framework of quantum field theory in curved spacetime. The aim of this article is to present a scalar-field-equation solution that is not only a zero-rank tensor under general coordinate transformations, but also common for anti-de-Sitter, de-Sitter, closed and open Einstein static universes. Moreover, it locally reduces to a Minkowski plane-wave solution and is non-perturbative in curvature. The former property makes it suitable for the standard applications of quantum theory in particle physics, while the latter allows then to gain insights into quantum physics in the strong-gravity regime.
Related papers
- Quantum Gravity Without Metric Quantization: From Hidden Variables to Hidden Spacetime Curvatures [0.0]
Bohmian mechanics offers a deterministic alternative to conventional quantum theory through well-defined particle trajectories.
We develop a covariant extension of Bohmian mechanics in curved spacetime that removes the need for metric quantization.
This new approach has far-reaching implications for the role of determinism and potential observational signatures of quantum non-equilibrium in cosmology.
arXiv Detail & Related papers (2025-02-12T14:03:54Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - To be or not to be, but where? [0.0]
Traditional approaches associate quantum systems with classical ones localized in spacetime.
canonical linearized quantum gravity disrupts this framework by preventing the formation of gauge-in-variant local algebras.
This presents a major obstacle for modeling early universe cosmology, gravity-entanglement experiments, and poses a significant roadblock toward a comprehensive theory of quantum gravity.
arXiv Detail & Related papers (2024-05-31T17:22:39Z) - Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - On free fall of fermions and antifermions [0.0]
We propose a model describing spin-half quantum particles in curved spacetime.
We find that spin precesses in a normal Fermi frame, even in the absence of torsion.
We also find that (elementary) fermions and antifermions are indistinguishable in gravity.
arXiv Detail & Related papers (2022-10-13T15:35:36Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Schr\"odinger's Black Hole Cat [0.0]
We show how to describe such "spacetime superpositions" and explore effects they induce upon quantum matter.
Our approach capitalizes on standard tools of quantum field theory in curved space.
arXiv Detail & Related papers (2022-04-01T12:11:36Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.