Marvel: Accelerating Safe Online Reinforcement Learning with Finetuned Offline Policy
- URL: http://arxiv.org/abs/2412.04426v2
- Date: Sun, 29 Dec 2024 12:27:50 GMT
- Title: Marvel: Accelerating Safe Online Reinforcement Learning with Finetuned Offline Policy
- Authors: Keru Chen, Honghao Wei, Zhigang Deng, Sen Lin,
- Abstract summary: offline-to-online (O2O) RL can be leveraged to facilitate faster and safer online policy learning.
We introduce textbfMarvel, a novel framework for O2O safe RL, comprising two key components that work in concert.
Our work has the great potential to advance the field towards more efficient and practical safe RL solutions.
- Score: 12.589890916332196
- License:
- Abstract: The high costs and risks involved in extensive environment interactions hinder the practical application of current online safe reinforcement learning (RL) methods. While offline safe RL addresses this by learning policies from static datasets, the performance therein is usually limited due to reliance on data quality and challenges with out-of-distribution (OOD) actions. Inspired by recent successes in offline-to-online (O2O) RL, it is crucial to explore whether offline safe RL can be leveraged to facilitate faster and safer online policy learning, a direction that has yet to be fully investigated. To fill this gap, we first demonstrate that naively applying existing O2O algorithms from standard RL would not work well in the safe RL setting due to two unique challenges: \emph{erroneous Q-estimations}, resulted from offline-online objective mismatch and offline cost sparsity, and \emph{Lagrangian mismatch}, resulted from difficulties in aligning Lagrange multipliers between offline and online policies. To address these challenges, we introduce \textbf{Marvel}, a novel framework for O2O safe RL, comprising two key components that work in concert: \emph{Value Pre-Alignment} to align the Q-functions with the underlying truth before online learning, and \emph{Adaptive PID Control} to effectively adjust the Lagrange multipliers during online finetuning. Extensive experiments demonstrate that Marvel significantly outperforms existing baselines in both reward maximization and safety constraint satisfaction. By introducing the first policy-finetuning based framework for O2O safe RL, which is compatible with many offline and online safe RL methods, our work has the great potential to advance the field towards more efficient and practical safe RL solutions.
Related papers
- Reward-Safety Balance in Offline Safe RL via Diffusion Regularization [16.5825143820431]
Constrained reinforcement learning (RL) seeks high-performance policies under safety constraints.
We propose Diffusion-Regularized Constrained Offline Reinforcement Learning (DRCORL)
DRCORL first uses a diffusion model to capture the behavioral policy from offline data and then extracts a simplified policy to enable efficient inference.
arXiv Detail & Related papers (2025-02-18T00:00:03Z) - Active Advantage-Aligned Online Reinforcement Learning with Offline Data [56.98480620108727]
A3 RL is a novel method that actively selects data from combined online and offline sources to optimize policy improvement.
We provide theoretical guarantee that validates the effectiveness of our active sampling strategy.
arXiv Detail & Related papers (2025-02-11T20:31:59Z) - On the Statistical Complexity for Offline and Low-Adaptive Reinforcement Learning with Structures [63.36095790552758]
This article reviews the recent advances on the statistical foundation of reinforcement learning (RL) in the offline and low-adaptive settings.
We will start by arguing why offline RL is the appropriate model for almost any real-life ML problems, even if they have nothing to do with the recent AI breakthroughs that use RL.
We will zoom into two fundamental problems of offline RL: offline policy evaluation (OPE) and offline policy learning (OPL)
arXiv Detail & Related papers (2025-01-03T20:27:53Z) - Unsupervised-to-Online Reinforcement Learning [59.910638327123394]
Unsupervised-to-online RL (U2O RL) replaces domain-specific supervised offline RL with unsupervised offline RL.
U2O RL not only enables reusing a single pre-trained model for multiple downstream tasks, but also learns better representations.
We empirically demonstrate that U2O RL achieves strong performance that matches or even outperforms previous offline-to-online RL approaches.
arXiv Detail & Related papers (2024-08-27T05:23:45Z) - Guided Online Distillation: Promoting Safe Reinforcement Learning by
Offline Demonstration [75.51109230296568]
We argue that extracting expert policy from offline data to guide online exploration is a promising solution to mitigate the conserveness issue.
We propose Guided Online Distillation (GOLD), an offline-to-online safe RL framework.
GOLD distills an offline DT policy into a lightweight policy network through guided online safe RL training, which outperforms both the offline DT policy and online safe RL algorithms.
arXiv Detail & Related papers (2023-09-18T00:22:59Z) - A Simple Unified Uncertainty-Guided Framework for Offline-to-Online
Reinforcement Learning [25.123237633748193]
offline-to-online reinforcement learning can be challenging due to constrained exploratory behavior and state-action distribution shift.
We propose a Simple Unified uNcertainty-Guided (SUNG) framework, which unifies the solution to both challenges with the tool of uncertainty.
SUNG achieves state-of-the-art online finetuning performance when combined with different offline RL methods.
arXiv Detail & Related papers (2023-06-13T05:22:26Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
We propose a novel framework called ENsemble-based Offline-To-Online (ENOTO) RL.
By increasing the number of Q-networks, we seamlessly bridge offline pre-training and online fine-tuning without degrading performance.
Experimental results demonstrate that ENOTO can substantially improve the training stability, learning efficiency, and final performance of existing offline RL methods.
arXiv Detail & Related papers (2023-06-12T05:10:10Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.