Cubify Anything: Scaling Indoor 3D Object Detection
- URL: http://arxiv.org/abs/2412.04458v1
- Date: Thu, 05 Dec 2024 18:59:09 GMT
- Title: Cubify Anything: Scaling Indoor 3D Object Detection
- Authors: Justin Lazarow, David Griffiths, Gefen Kohavi, Francisco Crespo, Afshin Dehghan,
- Abstract summary: We consider indoor 3D object detection with respect to a single RGB(-D) frame acquired from a commodity handheld device.<n>We introduce the Cubify-Anything 1M dataset, which exhaustively labels over 400K 3D objects on over 1K highly accurate laser-scanned scenes.<n>Next, we establish Cubify Transformer (CuTR), a fully Transformer 3D object detection baseline which rather than operating in 3D on point or voxel-based representations, predicts 3D boxes directly from 2D features derived from RGB(-D) inputs.
- Score: 4.338330763853994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider indoor 3D object detection with respect to a single RGB(-D) frame acquired from a commodity handheld device. We seek to significantly advance the status quo with respect to both data and modeling. First, we establish that existing datasets have significant limitations to scale, accuracy, and diversity of objects. As a result, we introduce the Cubify-Anything 1M (CA-1M) dataset, which exhaustively labels over 400K 3D objects on over 1K highly accurate laser-scanned scenes with near-perfect registration to over 3.5K handheld, egocentric captures. Next, we establish Cubify Transformer (CuTR), a fully Transformer 3D object detection baseline which rather than operating in 3D on point or voxel-based representations, predicts 3D boxes directly from 2D features derived from RGB(-D) inputs. While this approach lacks any 3D inductive biases, we show that paired with CA-1M, CuTR outperforms point-based methods - accurately recalling over 62% of objects in 3D, and is significantly more capable at handling noise and uncertainty present in commodity LiDAR-derived depth maps while also providing promising RGB only performance without architecture changes. Furthermore, by pre-training on CA-1M, CuTR can outperform point-based methods on a more diverse variant of SUN RGB-D - supporting the notion that while inductive biases in 3D are useful at the smaller sizes of existing datasets, they fail to scale to the data-rich regime of CA-1M. Overall, this dataset and baseline model provide strong evidence that we are moving towards models which can effectively Cubify Anything.
Related papers
- Weak Cube R-CNN: Weakly Supervised 3D Detection using only 2D Bounding Boxes [5.492174268132387]
3D object detectors are typically trained in a fully supervised way, relying extensively on 3D labeled data.
This work focuses on weakly-supervised 3D detection to reduce data needs using a monocular method.
We propose a general model Weak Cube R-CNN, which can predict objects in 3D at inference time.
arXiv Detail & Related papers (2025-04-17T19:13:42Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - Cross3DVG: Cross-Dataset 3D Visual Grounding on Different RGB-D Scans [6.936271803454143]
We present a novel task for cross-dataset visual grounding in 3D scenes (Cross3DVG)
We created RIORefer, a large-scale 3D visual grounding dataset.
It includes more than 63k diverse descriptions of 3D objects within 1,380 indoor RGB-D scans from 3RScan.
arXiv Detail & Related papers (2023-05-23T09:52:49Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - TR3D: Towards Real-Time Indoor 3D Object Detection [6.215404942415161]
TR3D is a fully-convolutional 3D object detection model trained end-to-end.
To take advantage of both point cloud and RGB inputs, we introduce an early fusion of 2D and 3D features.
Our model with early feature fusion, which we refer to as TR3D+FF, outperforms existing 3D object detection approaches on the SUN RGB-D dataset.
arXiv Detail & Related papers (2023-02-06T15:25:50Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Learning to Predict the 3D Layout of a Scene [0.3867363075280544]
We propose a method that only uses a single RGB image, thus enabling applications in devices or vehicles that do not have LiDAR sensors.
We use the KITTI dataset for training, which consists of street traffic scenes with class labels, 2D bounding boxes and 3D annotations with seven degrees of freedom.
We achieve a mean average precision of 47.3% for moderately difficult data, measured at a 3D intersection over union threshold of 70%, as required by the official KITTI benchmark; outperforming previous state-of-the-art single RGB only methods by a large margin.
arXiv Detail & Related papers (2020-11-19T17:23:30Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
We present a novel framework named ZoomNet for stereo imagery-based 3D detection.
The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes.
To further exploit the abundant texture cues in RGB images for more accurate disparity estimation, we introduce a conceptually straight-forward module -- adaptive zooming.
arXiv Detail & Related papers (2020-03-01T17:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.