Spin squeezing: Thermal behavior and distribution on excited states
- URL: http://arxiv.org/abs/2412.04564v1
- Date: Thu, 05 Dec 2024 19:12:43 GMT
- Title: Spin squeezing: Thermal behavior and distribution on excited states
- Authors: Saeed Mahdavifar, Hadi Cheraghi, Kourosh Afrousheh,
- Abstract summary: We investigate the spin-squeezing behavior under thermal effects in a one-dimensional transverse field XY model with spin-1/2.
At the thermal factorized field, a transition from a thermal squeezed state to an unsqueezed state occurs at a specific temperature called the coherent temperature.
- Score: 0.0
- License:
- Abstract: We investigate the spin-squeezing behavior under thermal effects in a one-dimensional transverse field XY model with spin-1/2. The exact solution of the model helps us to compute the spin-squeezing parameter as a function of temperature and also in all excited states with higher energy than the ground state. We find that below the thermal factorized field, h_f(T_{co}), there is no transition temperature. At the thermal factorized field, a transition from a thermal squeezed state to an unsqueezed state occurs at a specific temperature called the coherent temperature. Interestingly, we show that the finite temperature can create squeezed states from a state which at zero temperature is a coherent state. To complete our study, we also analyze the variation of the spin-squeezing parameter in the excited states and provide a behavioral analysis of the thermal spin-squeezing parameter.
Related papers
- Bound on annealing performance from stochastic thermodynamics, with
application to simulated annealing [0.6249768559720122]
Annealing is the process of gradually lowering the temperature of a system to guide it towards its lowest energy states.
We show how to bound the two case-specific quantities appearing in the bound, namely the activity, a measure of the number of microstate jumps, and the change in relative entropy between the state and the instantaneous thermal state.
arXiv Detail & Related papers (2023-11-17T09:59:47Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Correlating exciton coherence length, localization, and its optical
lineshape. I. a finite temperature solution of the Davydov soliton model [6.321935605877715]
We present a novel approach for connecting the lineshape of a molecular exciton to finite-temperature lattice vibrations.
We find that both the energy fluctuations and the localization can be described in terms of a parameter-free, reduced description.
arXiv Detail & Related papers (2022-03-10T19:51:02Z) - Temperature in Nonequilibrium Quantum Systems [0.0]
We show that temperature can be assigned to a general nonequilibrium quantum system.
We show that this definition of temperature is one of a set of thermodynamics parameters unambiguously describing the system state.
arXiv Detail & Related papers (2021-05-25T13:17:46Z) - Super-statistics and quantum entanglement in the isotropic spin-1/2 XX
dimmer from a non-additive thermodynamics perspective [0.0]
In this paper, the impact of temperature fluctuations in the entanglement of two qubits described by a spin-1/2 XX model is studied.
To describe the out-of-equilibrium situation, super-statistics is used with fluctuations given by a $chi2$ distribution function.
arXiv Detail & Related papers (2021-05-12T00:31:39Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Temperature Dependent Energy Diffusion in Chaotic Spin Chains [0.0]
We study the temperature dependence of energy diffusion in two chaotic gapped quantum spin chains.
For the Ising model, we are able to study temperatures well below the energy gap.
A kinetic model correctly predicts the observed exponential increase of the energy diffusion constant at low temperatures.
arXiv Detail & Related papers (2020-12-21T19:00:00Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.