BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
- URL: http://arxiv.org/abs/2412.04626v1
- Date: Thu, 05 Dec 2024 21:41:20 GMT
- Title: BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
- Authors: Juan Rodriguez, Xiangru Jian, Siba Smarak Panigrahi, Tianyu Zhang, Aarash Feizi, Abhay Puri, Akshay Kalkunte, François Savard, Ahmed Masry, Shravan Nayak, Rabiul Awal, Mahsa Massoud, Amirhossein Abaskohi, Zichao Li, Suyuchen Wang, Pierre-André Noël, Mats Leon Richter, Saverio Vadacchino, Shubbam Agarwal, Sanket Biswas, Sara Shanian, Ying Zhang, Noah Bolger, Kurt MacDonald, Simon Fauvel, Sathwik Tejaswi, Srinivas Sunkara, Joao Monteiro, Krishnamurthy DJ Dvijotham, Torsten Scholak, Nicolas Chapados, Sepideh Kharagani, Sean Hughes, M. Özsu, Siva Reddy, Marco Pedersoli, Yoshua Bengio, Christopher Pal, Issam Laradji, Spandanna Gella, Perouz Taslakian, David Vazquez, Sai Rajeswar,
- Abstract summary: We introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks.
We also introduce BigDocs-Bench, a benchmark suite with 10 novel tasks.
Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o.
- Score: 55.61185100263898
- License:
- Abstract: Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows, extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
Related papers
- OmniDocBench: Benchmarking Diverse PDF Document Parsing with Comprehensive Annotations [22.336858733121158]
We introduce OmniDocBench, a novel benchmark to advance automated document content extraction.
Our benchmark includes a meticulously curated and annotated high-quality evaluation dataset.
We perform an exhaustive comparative analysis of existing modular pipelines and multimodal end-to-end methods.
arXiv Detail & Related papers (2024-12-10T16:05:56Z) - M-Longdoc: A Benchmark For Multimodal Super-Long Document Understanding And A Retrieval-Aware Tuning Framework [75.95430061891828]
We introduce M-LongDoc, a benchmark of 851 samples, and an automated framework to evaluate the performance of large multimodal models.
We propose a retrieval-aware tuning approach for efficient and effective multimodal document reading.
arXiv Detail & Related papers (2024-11-09T13:30:38Z) - PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling [63.93112754821312]
Multimodal document understanding is a challenging task to process and comprehend large amounts of textual and visual information.
Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task.
We introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents.
arXiv Detail & Related papers (2024-10-08T12:17:42Z) - CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation [51.2289822267563]
We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets.
We use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents.
We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks.
arXiv Detail & Related papers (2024-09-03T17:54:40Z) - DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models [63.466265039007816]
We present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community.
We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.
arXiv Detail & Related papers (2024-06-17T15:13:52Z) - Read and Think: An Efficient Step-wise Multimodal Language Model for Document Understanding and Reasoning [0.0]
Existing document understanding models tend to generate answers with a single word or phrase directly.
We use Multi-modal Large Language Models (MLLMs) to generate step-wise question-and-answer pairs for document images.
We then use the generated high-quality data to train a humanized document understanding and reasoning model, dubbed DocAssistant.
arXiv Detail & Related papers (2024-02-26T01:17:50Z) - ContraDoc: Understanding Self-Contradictions in Documents with Large Language Models [7.428236410246183]
We introduce ContraDoc, the first human-annotated dataset to study self-contradictions in long documents across multiple domains.
We analyze the current capabilities of four state-of-the-art open-source and commercially available LLMs: GPT3.5, GPT4, PaLM2, and LLaMAv2 on this dataset.
While GPT4 performs the best and can outperform humans on this task, we find that it is still unreliable and struggles with self-contradictions that require more nuance and context.
arXiv Detail & Related papers (2023-11-15T18:23:17Z) - DocumentNet: Bridging the Data Gap in Document Pre-Training [78.01647768018485]
We propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models.
The collected dataset, named DocumentNet, does not depend on specific document types or entity sets.
Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training.
arXiv Detail & Related papers (2023-06-15T08:21:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.